
DTJC FILE COP] ,, ji)
CD9

Lfl

CD

N

OF

() DTIC
ECTE

JAN 1 8 1983

DMORrBUTIoN SATEMENT A
Approved for publc ieleamae

Distribution Unlimited

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio89 17 137

I

AFIT/MA/GCS/88D-1

DTIC
SELEC.- -p

JAN 1 8 1989

AN OBJECT-ORIENTED APPROACH TO THE
DEVELOPMENT OF COMPUTER-ASSISTED

INSTRUCTIONAL MATERIAL
USING HYPERTEXT

THESIS

Michael L. Talbert
First Lieutenant, USAF

AFIT/MA/GCS/88D-I

Approved for public release; distribution unlimited

0

AFIT/MA/GCS/88D-I

AN OBJECT-ORIENTED APPROACH TO THE

DEVELOPMENT OF COMPUTER-ASSISTED

INSTRUCTIONAL MATERIAL USING HYPERTEXT

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University
CO)PY

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science Acceso,; Kjr
NTIS r:,\

Michael L. Talbert, B.S. U.:

First Lieutenant, USAF

December 1988

Approved for public release; distribution unlimited

AcknowledQements

I am grateful to many whose support provided me the

priviledge of writing and receiving credit for this thesis.

For hardware support I thank my officemate Capt. Jim

Skinner, who saw to it that I had a computer and a desk to

put it on. For office space and the software which enabled

completion of this work, I thank my thesis advisor, Capt.

David Umphress. I thank Dave also for the moral support he

provided by agreeing to advise this thesis, and by providing

timely, thoughtful feedback on the many drafts.

For technical support and expert advice, I thank my

thesis committee members Professor Daniel Reynolds and LtCol

John R. "Skip" Valusek. Extra thanks to Dan for his

ceaseless enthusiasm, his interest in hypertext, and his

commitment to "educating" engineers. Likewise additional

thanks to LtCol Valusek for his interest in computer-based

training aids and his unwillingness to compromise his high

standards for the thesis work he reviews.

For additional support I thank Capt. Will Bralick, Maj.

Jim Howatt, and the members of GCS-89D who contributed to

the evaluation of my computer-based tutorial. I thank Dr.

Charles Fenno for his willingness to discuss the educational

implications and possibilities of using hypertext as I have

done. Additionally, for logistics support I thank Kristine

Zobrosky from the AFIT Engineering Library, who provided

ii

invaluable support by acquiring rumerous textbooks and

journal articles which were essential for my research.

For moral support I am indebted to many as well. I

thank my wife, for her love and devotion, and for

her d.etrmination to keep as busy ag I have been throughout

not only this thesis effort, but all of AFIT as well. I

thank also my parents who supported me by their confidence

in my abilities and my Christian friends who have served

both as a source of encouragement and as a reminder that

it's not how much free time you're given, but what you do

with that time that counts. And above all, I thank God

whose plans and ways are so beyond human understanding, for

seeing fit to manifest His promises to me through the

)members of this support group.

Michael Lane Talhert

4 iii

Table of Contents Page

Acknowledgements .. ii

List of Figures vi

List of Tables vii

Abstract viii

1. Introduction .. 1.1

1.1 Theme and Goals 1.1
1.2 Background 1.2
1.3 Statement of the Problem 1.3
1.4 Scope of the Research 1.4
1.5 Assumptions 1.4
1.6 Materials and Support Requirements 1.5
1.7 Overview 1.6

2. Literature Survey 2.1

2.1 Introduction 2.1
2.2 Computer Aided Instruction (CAI) 2.2
2.3 Knowledge Representation 2.4
2.4 Hypertext 2.8

2.4.1 Brief History of Hypertext 2.8
2.4.2 Some Hypertext-Related Definitions 2.9
2.4.3 More Details Concerning Hypertext 2.12
2.4.4 Applications of Hypertext 2.13
2.4.5 Large-Scale Hypertext Systems 2.15
2.4.6 Microcomputer-Based Hypertext Systems 2.17

3. Proposed Knowledge Base Decomposition 3.1

3.1 Motivation for a Textbase Structure 3.1
3.1.1 Learning Theory Advocates Formal Structure 3.2
3.1.2 Potential Pitfalls with Hypertext 3.3

3.2 Borrowing Structure from Software Engineering 3.6
3.2.1 The Object-Oriented Software Design

Paradigm 3.7

3.3 An Object-Oriented Approach to Textbase Design 3.11
3.3.1 Methodology for Knowledge Base

Decomposition 3.13
3.3.2 Text Object Representation 3.20
3.3.3 Two Candidate Object Representations 3.22
3.3.4 Representation Used in this Thesis 3.30

0
iv

3.4 Summary 3.32

4. Example Knowledge Base Decomposition 4.1

4.1 Introduction 4.1
4.2 An Example Using the Decomposition Methodology 4.1
4.3 Summary 4.17

5. Validation of the Decomposition Methodology 5.1

5.1 Introduction 5.1
5.2 Data Extraction by Experiment 5.1

5.2.1 Experimental Design Overview 5.2
5.2.2 Execution of the Experiment 5.2

5.3 Evaluation Tools and Their Uses 5.5
5.3.1 Pre-experiment Content Equivalency Check .. 5.5
5.3.2 Pretest and Posttest Concept Diagrams 5.7
5.3.3 Posttest Factual Recall Quiz 5.13
5.3.4 Posttest Attitudinal Surveys 5.15

5.4 Findings 5.17
5.4.1 Results of Concept Diagram Testing 5.19
5.4.2 Results of Objective Post-treatment Quiz .. 5.19
5.4.3 Results of the Attitudinal Surveys 5.21

6. Conclusions and Recommendations 6.1

6.1 Summary 6.1
6.2 Conclusions 6.2
6.3 Recommendations 6.7
6.4 Remarks 6.9

Appendix A: Encapsulated Objects from Example
Knowledge Base Decomposition A.1

Appendix B: Complete Hypertext-Based Tutorial B.1

Appendix C: Student Comments from Experimental Group
Attitudinal Surveys C.1

Bibliography BIB.I

Additional Sources ADD.l

Vita .. V.1

v

List of Figures Page

Figure 2-1. Concept Diagram as Knowledge Acquisition
Tool 2.6

Figure 2-2. Concept Diagram as Relational
Database Structure 2.7

Figure 2-3. Typical Hypertext Document Structure 2.11

Figure 3-1. OOD Encapsulated Object Representation .. 3.10

Figure 3-2. OOD Object Visibility Representation 3.12

Figure 3-3. Encapsulated Text Object Representation 3.20

Figure 3-4. Typical Text Object Visibility Structure 3.21

Figure 3-5. R-O Object Model Representation 3.23

Figure 3-6. R-O Object Model Visibility Structure ... 3.24

Figure 3-7. O-R Object Model Representation 3.28

Figure 4-1. Use of Window Titles to Re-enforce
Relationships 4.17

Figure 5-1. Tutorial vs. Article Content-Equivalency
Questionnaire 5.6

Figure 5-2. Pretest and Posttest In-Class Assignment 5.8

Figure 5-3. Master Concept Diagram 5.10

Figure 5-4. Concept Diagram Scoring Algorithm 5.12

Figure 5-5. Objective Portion of the Posttest 5.14

Figure 5-6. Attitudinal Survey for Experimental Group 5.16

vi

List of Tables

Page
Table 3-1. Summary of R-O vs. O-R Model

Characteristics 3.31

Table 5-1a. Control Group Scores 5.18

Table 5-1b. Experimental Group Scores 5.18

vii

Abstract

This'Vape- combines the concepts of learning theory,

knowledge engineering, software engineering, and hypertext.

It presents a methodology for creating formally structured

hypertext-based documents for use in transfer learning-

oriented computer-based tutorials. The methodology, which

parallels the proven Object-Oriented software design

paradigm, facilitates the decomposition of a knowledge base

into a hierarchical structure of text passages which form a

tutorial. Application of the methodology results in

encapsulated text objects which demonstrate many of the

desirable software characteristics (e.g. modularity,

cohesion). Evaluation of the methodology showed that it

*produced a computer-based tutorial which facilitates a

learner's relationship-oriented assimilation of the concepts

presented in the tutorial. K

0
viii

1. Introduction

1.1 Theme and Goals

Hypertext, with its capacity for non-linear

representation of text and graphical images, is a useful

software environment for the development and delivery of

Computer-Aided Instruction (CAI). The application of a

formal structure to hypertext in the light of instructional

delivery techniques advocated by modern learning theory, can

result in a computer-based product which facilitates

improved understanding of the concepts presented. This

thesis proposes an object-oriented methodology by which such

a formal structure can be applied to the development of

computer-based tutorials.

The goals of this research are:

1. Formalize and propose a methodology by which an
unstructured or informally structured knowledge base
can be mapped into a hierarchically structured,
relationship-driven hypertext-based tutorial.

2. Using a prototype tutorial structured via the proposed
methodology, obtain and analyze both objective and
subjective measurements of the structure's learning
effect on the users of the tutorial.

3. With the formal, built-in structure of a hypertext
document, overcome some of the recognized pitfalls and
frustrations associated with unchecked, ill-structured,
or poorly implemented hypertext.

1.1

1.2 Backgr und

Within the last few decades, training aids for

instruction in both the military and civilian sectors have

shown marked improvement from earlier training manuals and

programmed text training books. Improvements can be

ascribed primarily to the following two achievements:

1) advances in instructional methods stemming from research

in cognitive sciences and pedagogical techniques, and 2) the

introduction and more widespread availability of Computer-

Aided Instruction (CAI) and Computer-Based Training (CBT)

products and authoring systems. Computer-based products,

ranging from simple "electronic page turners" to multimedia

presentations, have been employed in various military,

industrial, and academic training programs, and have met

with initial success (see e.g., Dickinson, 1985; Enger, et

al., 1985; MacNiven, 1987; Roman, 1985; Verano, 1985).

Although graphics and pointing devices (e.g. mouse, joy

stick) have been used to enhance user interaction, much of

the text of some CAI products is still little more than a

training manual entered verbatim into the computer. The

result is an essentially linear and otherwise unstructured

presentation of the material. This organization of material

generally promotes rote learning, not understanding of the

underlyin; concepts and the relationships between them. In

contrast, modern instructional methods advocate a non-linear

1.2

presentation of material, one that more closely models the

way humans mentally represent information, and promotes

understanding (Mayes, et al., 1988; Novak, 1977; Novak and

1986; O'Shea and Self, 1983).

Hypertext and hypermedia environments are relatively

new computer concepts which facilitate a non-linear

presentation of material. Such environments are based on

hardware-supported links between text and graphics (Conklin,

1987a:4). Hypertext environments are becoming readily

available at relatively low cost, and can be used for the

development of non-linear CAI materials, especially in the

military training environment. Consequently, CAI products

developed in this manner may extend or eventually replace

the current linear computer-based products currently in use

in DoD training programs.

1.3 Statement of the Problem

Only recently have the development and utilization of

hypertext-based CAI materials for military training begun to

be seriously considered or attempted (Linn, 1988; Psotka,

1987; Burns, 1988). The primary causes are: 1)

commercially available hypertext technology has only

recently become available and feasible (Barney, 1987a:26;

Yankelovich, et al., 1985, 1987, 1988; Conklin, 1987a), and

2) as the absence of references in the literature indicates,

1

1.3

techniques for developing hypertext-based CAI materials are

not widely known or practiced.

1.4 Scope of the Research

This thesis addresses the goals expressed earlier in

this chapter. The primary end product of the research is a

methodology for mapping the key concepts of a base of

information into a representation which can be implemented

using hypertext. Application of the research is limited to

a reception learning mode of knowledge transfer, in which

the student follows hypertext links to browse through the

tutorial text. The tutorial product is suited for

implementation by a commercial hypertext environment, which

can be used on microcomputers such as the Zenith Z-248.

1.5 Assumptions

For this thesis, a commercially available hypertext or

hypertext-like software environment was used in lieu of the

creation of an original environment by the researcher. This

substitution is justified by the realization that individual

hypertext environments have been years in development and

testing, and time does not permit any new creation. Most

significantly, the hypertext materials developed as a result

of this research must be portable to microcomputers running

MS-DOS, such as the Zenith Z-248, which is already widely in

use in the military. Further, large-scale hypermedia

1.4

environments such as Brown University's Intermedia are

neither available to military CAI users and developers, nor

are they currently portable to the Z-248 computers.

In addition, the prototypical hypertext product

developed deviates from Conklin's ideal list of hypertext

characteristics (Conklin, 1987a:6-7 and see Chapter 2).

Primarily, with the prototype developed here, the user is

not able to dynamically create his own links, but uses a

pre-designed "learn-by-browsing" tool (Mayes, et al., 1988).

This is not viewed as a shortcoming of the methodology.

This is stated in view of the fact that the product is

designed as a "transfer learning" or "reception learning"

tool whose purpose is teaching the students from a specific

body of information. However, flexibility, choice, and

motivational factors are incorporated into the tutorial

design (Landow, 1987; Linn, 1988).

1.6 Materials and Support Requirements

Successful completion of the goals of this thesis

required the availability of a commercially available PC-

based hypertext environment. Knowledge Garden's

"KnowledgePro" and Owl's "Guide," both of which run on MS

DOS compatible machines, were considered as candidate

systems. Additionally, Apple's "HyperCard" program would

support prototype development. The Knowledgepro environment

was used in this thesis, primarily because MS-DOS compatible

1.5

microcomputers were readily available at AFIT for use by the

researcher. Also, future research involving KnowledgePro is

planned at AFIT, beyond this single work.

Technical assistance concerning the information content

of the training material used in this thesis was provided by

instructors in the Graduate Computer Systems curriculum in

whose classes the product was evaluated. AFIT Mathematics

and Operations Research Sciences faculty provided assistance

in the design of the experiment used to evaluate the

methodology. In addition, members of entry level computer

science classes evaluated the usefulness of the prototypical

hypertext-based product developed as a part of this thesis.

1.7 Overview

The overall thesis effort consists of four key phases.

Chapter 2 surveys recent literature in the fields of

Computer-Aided Instruction, knowledge representation, and

hypertext. Chapter 3 presents a formal methodology which

facilitates the decomposition of a knowledge base into a set

of text passages which form the "textbase" of a computer-

based tutorial. This methodology is offered as an

structured method of hypertext document creation. Chapter 4

presents an example knowledge base decomposition using the

proposed methodology. Chapter 5 discusses an evaluation of

the methodology by way of experiment, examining the results

of the tutorial as used in an educational environment.

1.6

2. Literature Survey

2.1 Introduction

The last decade has seen Computer-Aided Instruction

(CAI) tighten its already firm hold in the schools and take

a solid place in industry and the military as an in-house

tutorial delivery system (see O'Shea and Self, 1983; Roman,

1985; MacNiven, 1987). Research on both the cognitive and

computer sides of CAI has extended the basic CAI tutoring

"drill and practice" function in primarily two ways. First,

it provides a flexible, non-linear progression through CAI

tutorials (O'Shea and Self, 1983:73-78). Second, it places

the computer in the role of an Intelligent Tutoring System

(ITS) (Ohlsson, 1987; Yazdani, 1987). The latter is a more

recent enhancement and is a product of the application of

Artificial Intelligence (AI) techniques. The former is most

recently facilitated by "hypertext" environments, which

allow virtually unlimited linking and branching between

sections of text and graphics (Conklin, 1987a).

The focus of this thesis is on the design and

development of microcomputer-based, "non-AI" CAI tutorials

which use hypertext. This literature review presents a

survey of the state of CAI, knowledge representation

techniques, and hypertext, with the following questions in

mind: What similarities hold between CAI desirables and

2.1

hypertext capabilities that will enable the two to come

together, and how can the CAI textledge base be structured

to facilitate the merger?

2.2 Computer Aided Instruction (CAI)

CAI has progressed from linear programmed "learning

machines" to non-linear branching programmed instruction, to

"adaptive teaching programs" which "decide" frame-to-frame

progression in accordance with the student's performance

history. Now, hypertext-based systems and intelligent

tutoring systems are providing even more intelligent, more

non-linear branching capabilities for CAI programs and

systems (Self, 1983:74).

In industry, corporate training program managers have

advocated replacing or supplementing lecture-based training

with on-line or microcomputer-based training. They cite

advantages such as the flexibility of individual

instruction, availability of ready-made software packages,

automatic progress checking and record keeping, and lower

long run costs compared to lecture-based training (Roman,

1985:82-89).

In the schools, the focus of CAI upgrade efforts are

not entirely on the physical capabilities of hardware and

software, but on the support CAI presentation methods lend

2.2

to the actual learning process. The editors of Artificial

Intelligence and Education, express this thought:

Authentic knowledge means what is to be learned should
not merely be 'added to the knowledge base,' but rather
assimilated into the person's pre-existing system of
knowledges, and even more, should be freely expressed
from internal motives when appropriate. The emphasis
leads to a focus on the activity of the learner because
it must be HIS internal action that integrates new
knowledge to old and expresses that integration
creatively [Lawler and Yazdani, 1987:x].

The schools have found microcomputers to be a useful

instructional delivery system which provides the interaction

the learner needs to assimilate new material. Many

educational journals (e.g. Academic Computing, Computers and

Education, Educational Technology Systems, and Journal of

Computer Assisted Learning), textbooks, and conference

* proceedings are dedicated solely to school utilization of

microcomputer-based CAI. Currently, much of the published

works approach school use of CAI in terms of evaluation,

special uses, and design (see e.g. Hativa, 1986; Collier et

al., 1987; McCaughey, 1986-87; Raymond, 1987; Boulet, 1987;

Plambondon and Deschdnes, 1986; Rambally and Rambally, 1987;

Shaw, et al.,, 1985).

While the USAF has successfully employed computer-based

training in many environments, a lack of centralization and

organization in the design and development of CAI materials

has prevented cross-service and intra-service uniformity

among CAI environments and products (MacNiven, 1987). The

0
2.3

Army Research Institute's (ARI) Joseph Psotka has reviewed

current Intelligent Tutoring Systems in use in the U.S.

Army. He has found the combination of natural language

processing technologies, AI database relationships, and

hypertext interface capabilities demonstrates a very

powerful method of instructional presentation in the

military training environment. He concedes, however, that

"too little work has been aimed at developing new

representations for information and relationships" (Psotka,

1987:6), and has come to this conclusion:

Of most obvious importance is the development of
structures that encode and make explicit causal
connections, and decompose systems into simpler causal
structures where functional relationships are more
apparent [Psotka, 1987:6].

2.3 Knowledge Representation

One method of representing these structures is the

decomposition of a knowledge base through the construction

of a "concept map" (Novak and Gowin, 1986), "associative

network" (Charniak and McDermott. 1984), or "semantic

network" (Psotka, 1987). These terms may be seen as

concept-oriented equivalents of software-oriented

"functional decomposition" (Pressman, 1987) and "object-

oriented design" (EVB, 1985), and the relational data base

concept of "entity-relationship" models.

Concept Maps. Concept maps have proven to be a versatile

tool as a means of representing the non-linear structure of

2.4

related concepts or components. They have been used

* successfully as a knowledge elicitation tool in environments

ranging from elementary education (Novak and Gowin, 1986) to

operations research (McFarren, 1987), to artificial

intelligence (Hayward, et al., 1987). McFarren lists three

benefits concept maps provide as knowledge representation

tools:

1) identification of the small number of key ideas
within a subject, 2) a visual road map showing the
conceptual journey, and 3) a schematic summary of the
cognitive domain of interest [McFarren, 1987:46].

In the construction of a concept map, a body of

knowledge or other related information components is

represented as a network whose links are relationships

between the concepts or components (Novak and Gowin, 1986).

An example concept map used as an operations research

knowledge representation tool is provided in Figure 2-1.

Though concept maps are primarily used as a knowledge

acquisition tool, (McFarren, 1987:51-52), concept-

relationship structures are also used to define the

structure of relational databases (see Figure 2-2) and rule

bases of artificial intelligence (AI) and expert systems

(ES) knowledge bases (Charniak and McDermott, 1984:22-29;

Winston, 1984:253-259; Hayward, et al., 1987).

0
2.5

04

D-0

*Z -K

00

4L4

Fiur 21.Cocet iaraLa KoldgeRpeetto
Tool (Wlo,398

2.6

ASE3A T

IAIRCRAFT is w "K

0sx

Figure 2-2. concept Diagram as Relational Database
Structure (Walker, 1988)

2.7

2.4 Hypertext

The recent introduction of microcomputer-based

hypertext products such as Apple's "HyperCard" (Williams,

1987) and Owl's "Guide" (Hershey, 1987), and large-scale

hypertext system research projects in the academic community

(Beeman, et al., 1987; Smith, et al., 1987; Yankelovich, et

al., 1987, 1988), have sparked widespread public and

academic interest in hypertext systems.

2.4.1 Brief History of Hypertext

In 1945 Vannevar Bush introduced the basic ideas of

modern hypertext systems with his "Memex,... a tool that

provides access to a large collection of microfilm and

mechanisms to make links between any two pieces of

information in the system" (Smith, 1988:33). However, the

term "hypertext" is credited to Theodor Nelson, who in 1965

defined it as:

a combination of natural language text with the
computer's capacity for interactive branching, or
dynamic display... of a non-linear text.. .which cannot
be printed conveniently on a conventional page
[Conklin, 1987b:17].

By the late 1960's, Nelson, with the help of computer

scientists Douglas Englebart and Andries van Dam, had begun

to prototype the first hypertext system at Brown University.

Surprisingly, the original utilization of hypertext was as a

linear manuscripting tool (a souped-up text editor),

primarily for the sophisticated editing features hypertext

2.8

offered. But by the mid 1970's, seminal experiments using

hypertext as an educational tool were proposed and

implemented at Brown University (Barney, 1987a:26).

2.4.2 Some Hypertext-Related Definitions

The definition of key terms is in order before a review

of current research and applications of hypertext. A

definition of "hypertext" has already been provided;

however, a frequently used alternate term, "threaded text,"

which is perhaps a more intuitive expression of the idea,

evokes the image of text physically linked by some fibrous

matter (Thompson and Thompson, 1987a:25). Other popular

terms are "non-linear text" (Shasha, 1987:163), and "non-

lineal text" (Beeman, et al., 1987:67), both of which

address the function of hypertext more than the definition,

and imply that text need not be scanned in a strict

sequential manner as in ordinary text books. "Hypermedia,"

then, is simply the extension of non-linearity to media

beyond text and graphics, to include audiovisual media (e.g.

film, spreadsheets, sound recordings, etc.) (Smith,

1988:33). Jeff Conklin gives a user-oriented description:

The concept of hypertext is quite simple: windows on
the screen are associated with objects in a data base,
and links are provided between these objects, both
graphically (i.e. as labelled icons) and in the data
base (i.e. as pointers) (Conklin, 1987a:4].

It is also Conklin's works which address, generally from a

technical standpoint, several other hypertext-related terms.

0
2.9

A "node" may be thought of as any discrete section of

text or graphics, which is linked to another. Nodes may be

single characters, words, paragraphs, pages, icons, etc.,

and serve as portals through which the user may enter

another section of the hypertext document, arriving at a

destination node. The new section may then present other

nodes, which open to text sections with still other nodes.

(Conklin, 1987a:48-53).

A "link" is the hardware supported connection between

two nodes. One may move about from node to node via links.

Links may be one-way or two-way, depending on the

sophistication of the particular system hardware. According

to Conklin, machine supported links are "the essential

O feature of hypertext systems.... It is this linking

capability which allows a non-linear organization of text"

(Conklin, 1987b:18).

According to Conklin, beneath the user's view of a

hypertext document, the underlying database of linked text

and graphics is referred to as the "hyperdocument," or

alternatively the "hypergraph" (Conkiin, 1987a:6) (see

Figure 2-3). Document systems so configured "consist of

fragments of text embedded in a directed graph with labelled

edges" (Shasha, 1987: 163).

2.10

* Display screen

I

B
C

F E

Hypertext database

Figure 2-3. Typical Hypertext Document structure
(Conklin, 1987a:5)

2.11

2.4.3 More Details Concerning Hypertext

Conklin's survey of hypertext (Conklin, 1987a), one of

the more technical recent works, includes a discussion of

features which characterize hypertext systems. Conklin

(1987a:39-53) states that an ideal hypertext system should

include:

0 A database which is a network of linked text and

graphics nodes;

o A fully supported window system in which named windows

correspond to text or graphics nodes in the database

network, and in which windows may be represented by

icons on the screen and opened and closed with a

* pointing device on the icon;

o A set of commands or tools by which a user may create

new links between text and graphics nodes;

o A means by which the database may be visited by a)

following links between established nodes, b) searching

for keywords and strings, and c) by using a specialized

graphical 'browser' that displays the nodes of the

database, their relative position to each other.

Of Conklin's listed characteristics, it is the use of

multiple on-screen windows which gets much of the attention

in the literature. This capability, while neither new nor

strictly tied to hypertext systems, has itself become a

2.12

separate research issue (see e.g. Tombaugh, et al., 1987;

Norman, et al., 1986). The use of multiple window displays

provides the user with the capability to examine, often

simultaneously, separate sections of text or graphics. Not

surprisingly then, windowing functions in combination with

the branching abilities of hypertext systems have opened the

door for non-linear reading and writing of electronic

literature (Neuwirth, et al., 1987; Thompson and Thompson,

1987a; Tombaugh, et al., 1987; Yankelovich, et al., 1985).

2.4.4 Applications of Hypertext

Hypertext systems have been applied in information-

intensive environments, many academic. Gary Marchionini and

Ben Shneiderman submit that hypertext can impact electronic

information systems from three primary directions:

information retrieval, interface design, and cognitive

science (Marchionini and Shneiderman, 1988: 71-72). Karen

Smith discusses other current and proposed uses of

hypertext, including document retrieval and file

manipulation (Smith, 1988). Still other applications

include text browsers (Yankelovich, et al., 1985) and

writer's tools (Neuwirth, et al., 1987; Smith, et al., 1987;

Beck, 1988; Mayes, et al,. 1988).

Educational Use of Hypertext. Of most relevance to

this thesis is the dedication of hypertext and hypermedia

systems to the non-linear presentation of educational

2.13

material. The bulk of research in this area has been

conducted at Brown University in Providence, Rhode Island,

by the Institute for Research in Information and Scholarship

(IRIS). IRIS coordinator, Nicole Yankelovich, has led most

of the Brown University research, and is one of the most

published authors concerning hypermedia and CAI to date (see

e.g. Yankelovich et al., 1985, 1987, 1988). Further, the

seminal Brown University studies are the source of most

education-oriented hypermedia journal articles (see e.g.,

Beeman, et al., 1987; Garrett, et al., 1986; Smith, 1988;

Yankelovich et al., 1987, 1988).

The hypermedia research at Brown University began in

the summer of 1985 when IRIS team members began developing a

"large-scale hypertext/hypermedia system called Intermedia"

(Smith, 1988:32). Intermedia was designed to be a system

which "enables instructors and students to create, organize,

visualize and connect multimedia information with a set of

integrated editors and application programs" (Yankelovich,

et al., 1987:1). The Intermedia system has since been used

in an English Literature (Landow, 1987) and a Cell Biology

classroom, and has met with initial success. According to

the participating instructors, students in the hypermedia-

based classrooms felt they came out of the class with a

deeper understanding of the course material, and would

choose other such courses over regular "linear" courses in

the future (Beeman, et al., 1987; Yankelovich et al., 1987).

2.14

Besides the ongoing work at Brown, little other work

published to date addresses hypertext-based CAI projects in

the academic community. However, on behalf of the DoD,

projects are planned or underway at the University of

California at Berkeley (Linn, 1988), the Army Research

Institute (Psotk 1937), and the Air Force Human Resources

Laboratory at Brooks AFB, TX, where the "Hypertext

Initiative Program" is slated for later this year (Burns,

1988). At U.C. Berkeley, the proposal has been made to

introduce hypermedia into the DoD, as a means of training

DoD members in computer programming languages and

programming techniques (Linn, 1988). At Brooks as at the

ARI, emphasis is on intelligent training systems which are

based on non-linear text (Psotka, 1987; Burns, 1988).

2.4.5 Large-Scale Hypertext Systems

Intermedia. Perhaps the largest and most well-

implemented hypertext system to date is Brown University's

Intermedia (hypermedia) environment. Both an author's tool

and a user's tool, the icon-driven, window-driven, menu-

driven Intermedia system is based on tools available on the

Apple MacIntosh, and runs on a network of IBM RT PC

workstations, using UNIX 4.2 (Smith, 1988:34; Yankelovich,

et al., 1988:82). The main components of Intermedia are

five applications tools, "a text editor (InterText), a

graphics editor (InterDraw), a scanned image viewer

2.15

(InterPix), a three-dimensional object viewer (InterSpect),

and a timeline editor (InterVal)" (Yankelovich, et al.,

1988:82).

Intelligent Design Environment and Authoring System.

The ARI, in its research of Intelligent Computer-Aided

Instruction systems (ICAI), is investigating the use of

several hypertext-based systems. The primary one, IDEAS, is

based on Randall Trigg and Xerox PARC's NoteCards system

(Conklin, 1987a:13-15; Psotka, 1987:11). The basis of the

system is computerized 3 X 5 index cards. According to

Psotka:

A Notecard is intended to contain a small, single,
idea-sized chunk of information, either in textual or
graphical form. A collection of Notecards can be
arbitrarily linked together to form networks that
convey the relationships among the ideas stored in the
various Notecards The links are visible within each
notecard as a hotspot title or icon that is mouse-
sensitive and pops up into the full text or graphic
when it is buttoned [Psotka, 1987:11].

Like the MacIntosh-based Intermedia, the Lisp-based

IDEAS uses a unique toolset made up of three "IDEs." The

Instructional Design Environment (IDEI), is designed to

"help trainers think more thoroughly about their

instructional intent" (Psotka, 1987:13). The Instructional

Development Environment (IDE2) provides "tools to manage the

process of development, make it faster and more effective,

and make it conform more closely to the specifications laid

out in IDE1" (Psotka, 1987:13). The Instructional Delivery

0
2. 16

Environment (IDE3) "provides facilities for delivering,

presenting, testing, controlling, and managing the training"

(Psotka, 1987:13). IDEAS uses two high resolution screens

on PC workstations, similar to Intermedia.

The U.C. Berkeley System. The U.C-Berkeley study

implements a hypertext system built around an advanced

workstation such as the Apple MacIntosh, and takes a

position near the middle of the large-scale to small-scale

continuum. Their system will "combine recent advances in

understanding how students learn and how instruction can be

effective with recent advances in technology to provide

powerful self-paced programming courses" (Linn, 1988:1).

Their proposed environment emphasizes "expert strategies for

the design of computer programs," and "self-paced

instruction including acquisition of self-regulation

skills," and "would also include a database of alternative

representations for the same programming problems" (Linn,

1988: 1-2).

2.4.6 Microcomputer-Based Hypertext Systems

Apple's HyperCard. As Conklin, who has reviewed nearly

all hypertext-like systems in use to date, points out,

"Ironically, HyperCard is not hypertext" (Conklin,

1987a:32). In fact, HyperCard was never really intended to

be hypertext, but instead "a personal toolkit that gives

users the power to use, customize, and create new

2.17

information using... text, graphics, video, music, voice, and

animation" (Williams, 1987:109; Conklin, 1987a:32). Even

so, HyperCard has been very well received by hypertext

enthusiasts (Barney, 1987b).

HyperCard appears on the screen as one of a stack of

notecards, similar to the NoteCards system described

earlier, with mouse-sensitive buttons, icons, pull-down

menus, etc. HyperCard provides the non-linearity

characteristic of hypertext systems, but, being graphics

driven, does not provide text-to-text links (Conklin,

1987a:32).

Recently, however, the MacIntosh's graphics-to-graphics

linking capabilities have been used in "StrathTutor," a

"Learning-by-Browsing" Computer Assisted Learning (CAL)

system developed in Europe. Though not a true hypertext

system, StrathTutor is an intelligent CAI system, which the

creators regard as an example of a "reactive learning

environment." The system is predicated on providing user

interaction which encourages learning through "exploring the

database and developing a conceptual structure of it"

(Mayes, et al., 1988:222-228).

Owl's Guide. Guide is a MacIntosh-based hypertext

system which, in contrast to HyperCard, allows for both

text-text and text-graphics linkages, more in line with

Conklin's description of an ideal hypertext system (see

2.18

above). Boldfaced text and graphics objects can be buttons

that are linked to new text and graphics. Some buttons

cause the expansion of "hidden text," much like the

expansion of an outline heading. Other buttons cause new

windows to open, which in turn contain new buttons (Hershey,

1987).

KnowledqePro. One of the newest microcomputer-based

hypertext products has it roots in AI systems. KnowledgePro

is itself actually an expert system shell. However,

features of KnowledgePro allow it to function as a hypertext

environment. It allows for and enforces structured

groupings of hypertext nodes. With KnowledgePro, text

sections become icons by being highlighted in different

colors (Thompson and Thompson, 1987b; Knowledge Garden,

1988).

TextPro. Textpro is a less sophisticated hypertext-

generating component of the larger expert system

environment, KnowledgePro. In contrast to HyperCard and

Guide, TextPro (as well as KnowledgePro) is designed for use

on MS-DOS compatible machines, like the Zenith Z-248

personal computers in use in the USAF (Thompson and

Thompson, 1987b; Knowledge Garden, 1987).

2.19

0 3. Proposed Knowledge Base Decomposition

3.1 Motivation for a Textbase Structure

This chapter implements the relationship-based

structure of knowledge representation with the network-based

structure of hypertext. The result is applied to the

"textbase," the collection of paragraphs which form the

textual material, of a computer-based tutorial. In the

process, there are obstacles which must be overcome. First,

the traditional linear format of text too greatly constrains

the written representation of information. Hypertext

affords a means for overcoming this shortfall. However, and

secondly, the general network structure of hyperdocuments

may be unsuitable for presenting some instructional material

(Smith, et al., 1987). The challenge, then, is this:

Hypertext authors must... transform inchoate ideas into
coherent structures that can be comprehended as well as
traversed. Users of hypertext documents must... under-
stand what they read (or see, or hear...) and must
construct relations between new information and old,
one idea and another [Smith et al., 1987:196].

And to do so,

one must employ devices that enforce hypertext capacity
to establish intellectual relations" [Landow,
1987:334].

The goal of this chapter is to draw on principles of

learning theory and software engineering and apply them to

structuring a hypertext-based tutorial. The result is a

3.1

methodology for designing and developing a relationship-

driven tutorial textbase.

3.1.1 Learning Theory Advocates Formal Structure

From a cognitive perspective,

The central purpose of any education is to communicate
to students a grasp of the essential and central ideas
of the subject matter. These are the concepts,
principles, and procedures around which the
propositions of the knowledge base of the discipline
are organized... [Shulman and Ringstaff, 1985:12].

And the structuring of the presentation of facts, concepts

and principles of a discipline is essential to learning

those facts, etc. (Shulman and Ringstaff, 1985:11-12).

However, in the realm of reception or transfer learning, the

central ideas of a subject matter are commonly articulated

via the written prose of textbooks and journal articles.

What structure there is of this method of presentation is

inherently linear and sequential.

There are several shortcomings of a strict sequential

presentation of text. First, it does not facilitate

understanding of the concepts it presents. Cognitive

theorists view true learning as taking place when a new

concept can be understood by its relationship to concepts

already learned (Novak, 1977:64-93; Shulman and Ringstaff,

1985:11-17; Woolfolk and McCune-Nicholich, 1984:239-243).

According to David Ausubel's theory, a reader assimilates

new information by relating it to previously understood

concepts, subsuming new details under broader concepts

3.2

(Novak, 1977:24-28; Woolfolk and McCune-Nicholich, 1984:239-

243). In this way, we understand new ideas in a

hierarchical structure. Older, broader concepts are at the

top and finer details are toward the bottom.

Secondly, a sequential text format does not conform to

the network structure presented in Chapter 2 as concept

maps. A network structure closely parallels the reader's

"mental model" of information (Marchionini and Shneiderman,

1988:72-74); it is necessary for establishing long-term

memory of concepts (Smith et al., 1987). Here again, it is

the relationships among concepts which are necessary for

learning.

3.1.2 Potential Pitfalls with Hypertext

The fundamental representation of hypertext enables a

writer to construct the necessary relationship-oriented

links between concepts in a hyperdocument. However, the

structure of a typical hyperdocument is neither a hierarchy

nor a formal network, but is simply a directed graph of

nodes connected by links (Conklin, 1987b). Without formal

structure and the "[enforcement] of hypertext capacity to

establish intellectual relations" (Landow, 1987:334), there

are potential problems with carelessly constructed

hyperdocuments.

Unchecked Network Promotes Disorientation. One common

caveat in hypertext literature addresses the potential for

3.3

readers to become disoriented in large and complex hypertext

networks. In this state, the reader may not fully

appreciate the relationships between text sections.

Remedies to this problem include tracing the reader's trail

through the hyperdocument and displaying global or localized

"neighborhood maps" of the hyperdocument. Through these

mechanisms, the reader may orient himself in the document

(Conklin, 1987a; Oren, 1987).

A related disorientation problem is that of document

closure. In this case, the reader may be left with no sense

of how much has been covered or remains unread. since the

document is non-linear, the textbook concept of an "end of

the book" no longer applies. As with the general

disorientation problem, graphical roadmaps of the document

are often used as a remedy (Oren, 1987).

Misleading Links Frustrate Readers. Although

disorientation is related to the hyperdocument structure,

semantic problems internal to the document text, are equally

as disquieting to the learner. A reader must navigate

through the hyperdocument via links marked as nodes. These

link markers commonly appear directly in the text as

highlighted words, phrases, etc., and invite the reader to

explore. When the nodes are carelessly labeled, the linked

text may not be what the reader expected.

3.4

George Landow, of Brown University's Institute for

Research In Information and Scholarship (IRIS) has observed

these three rules concerning hypertext links:

1. Hypertext links condition the user to expect
purposeful, important relationships between linked
materials.

2. The emphasis upon linking materials in hypertext
stimulates and encourages habits of relational thinking
in the user.

3. Since hypertext systems predispose users to expect
such significant relationships among files, those files
that disappoint such expectations appear particularly
incoherent and nonsignificant [Landow, 1987;332-333].

Landow's rules are addressed further in this chapter.

As an example of the third rule, in a very large

hyperdocument with pre-established links connecting a wide

and varied collection of text passages, some node names may

likely be homonyms. Consequently, a reader in the middle of

a discourse on "butterflies" may activate a link on a node

labeled "monarch," and end up in a text concerning "European

Rulers" (Raskin, 1987:327). Nodes with vague or ambiguous

labels are also undesirable. These nodes may link to

material whose content is unrelated to that of the text from

which the link is activated. These are understandably

sources of reader frustration. They waste the reader's

time, interrupt his thought pattern, and could reduce his

desire to explore additional links (L.indow, 1987).

0
3.5

A proposed solution to these problems, in view of the

need for a hierarchical, relationship-driven textbase, is to

impose structure on the hyperdocument. Structure can be

enforced even as the document is being designed. For this

much needed structure, we may borrow the structured approach

to design from the principles of software engineering

(Pressman, 1987).

3.2 Borrowing Structure from Software Engineering

A premise upon which this thesis is built is that the

design of a tutorial textbase is not unlike the design of

any other software system. Using a loose translation of the

term, the text and graphics which comprise the textbase may

themselves be considered a form of "software" (Pressman,

1987:5-12; Webster, 1973). That is, since the text segments

and nodes are not hardware, they must be software.

With that equivalency in mind, what about the

principles of software engineering makes them useful for

developing hyperdocuments? Foremost, the application of

software engineering principles results in formally

structured, understandable, modular software components. In

addition, these modules enforce data abstraction and

information hiding (Pressman, 1987:222-230). In view of the

desired structure and function of a tutorial as expressed

earlier, the motivation for a software engineering approach

to tutorial design becomes clear.

3.6

* But the field of software engineering offers numerous

design methodologies, such as Jackson System Development

(JSD), Data Structured System Development (DSSD), and

Object-Oriented Design (OOD) (Pressman, 1987). These

methodologies employ equally as many program flow

representations (e.g. Data Flow, Transaction Analysis,

Transfer Analysis) (Pressman, 1987). A desirable software

engineering model for use as a means of structuring concept-

based learning material is one which facilitates a concept-

oriented approach. The object-oriented representation

facilitated by the OOD methodology satisfies this need. As

a result, the textbase design methodology proposed here is

patterned after the OOD software design paradigm.

3.2.1 The object-Oriented Software Design Paradigm

OOD provides a mapping from a problem space (all the

components of the problem to be solved) to a solution space

(the software which models or solves the problem).

Formally, the OOD methodology involves the sequence of steps

outlined below (Booch, 1983:40-44).

3.7

1. State the problem succinctly in a single sentence
2. Bound the problem statement to a single paragraph
3. Identify the objects involved in the problem
4. List the attributes of the objects
5. Identify operations on the objects
6. Define relations and interfaces between objects
7. Decide on implementations of the objects and operations
8. Recursively apply the process to the operations as

needed

The first step in an OOD decomposition is the

identification and clarification of the problem to be

solved. EVB (1985:2-2) advocates accomplishing this step by

stating the problem in one complete, grammatically correct

sentence. From this one sentence, the scope of the problem

is defined and bounded by expanding the sentence to a single

paragraph. It is typically a five to nine sentence

paragraph which describes, in high level terms, the problem

to be solved. It is important to write this first problem

description at a constant level of abstraction to preclude

ambiguity or incompleteness in the lower levels of the

problem space decomposition (EVB, 1985; Pressman, 1987).

After bounding the problem, the process of

decomposition begins. OOD effects decomposition by

representing the problem space as data objects and

operations on and by them. Objects are the "major actors,

agents, and servers in the problem space" (Booch, 1987:48).

Operations "serve to characterize the behavior of each

object or class of objects" (Booch, 1987:49). Typically,

the objects are the nouns and noun phrases in the problem

3.8

description and the operations are the verbs and verb

phrases (EVB, 1985:2-6 - 2-10).

The identification of objects and operations begins at

a high level of abstraction and seeks progressively lower

levels of abstraction (higher levels of detail). For

example, a first level object may be a "Fuel_Regulator,"

with associated operations such as "MonitorFlowRate" and

"ControlFuelFlow." Since each of these terms are broad

enough to encompass several lower level objects and

operations, further decomposition may be warranted. In this

case, another problem description may be needed for each of

these subproblems.

As in the first iteration, nouns and verbs are

identified as components of the next lower level of

decomposition. These might include objects "RateMeter" and

"FlowValve" and operations "ReadMeter," "Open_Valve," and

"CloseValve." Applying this technique, a software designer

may then recursively decompose the results of each iteration

until sufficient detail has been extracted (Booch, 1987;

EVB, 1985; Pressman, 1987).

Once the objects and operations have been identified, a

process of refinement begins. Unnecessary or superfluous

objects are no longer considered. Like objects are grouped

or classified. Data types and operations which apply

3.9

specifically to an object are encapsulated in a stand alone

module (EVB, 1985:2-10 - 2-15; Pressman, 1987:350-353).

In this encapsulated manner, there exists a bond

between an object, its data types, and the operations which

act on or are exported by the object. Pressman states that

"objects 'know' what operations may be applied to them"

(Pressman, 1987:363) by the combination of an object and its

associated operations" in a single program component"

(Pressman, 1987:363). This single component commonly takes

the form of an Ada package which may "export" any or all of

its data types and operations (Booch, 1987). A typical

encapsulated object is depicted in Figure 3-1.

Exportable
Data and______ ___

Operatiocti

Figure 3-1. OOD Encapsulated Object Representation

3.10

After the encapsulation of data and operations into

0 modules, communication or "visibility" between object-

modules must be established (Booch, 1987:49). That is,

there must be some means by which one object may call or

reference another, or by which a programmer can access the

operations and data types encapsulated in a module. In Ada,

for example, each object package has a "specification" which

defines the syntax and semantics for accessing its

exportable components (Booch, 1987:55).

As a result of the application of the OOD methodology

as abbreviated above, the eventual software structure is

determined. It can be depicted as a network of objects,

with links representing communication between them (see

Figure 3-2). A similar, ordered approach to defining

structure is desired between text modules in a hypertext

document. This theme will guide the remainder of the

chapter.

3.3 An Object-Oriented Approach to Textbase Design

This section of the thesis keys on an abstract view of

a CAI tutorial textbase. The textbase will be viewed simply

as a collection of discrete text segments, which in the

aggregate, through a set of text-to-text links, comprise the

entire tutorial.

S
3.1

In the process of imposing structure on the text, the

manipulation of text segments will be addressed from an

object-oriented point of view. The objects are text

segments, the paragraphs and passages of the tutorial. The

segments present discussions of the key concepts and expound

on relationships between one concept and another, in keeping

with Ausubel's approach. The object themes, concept-

relationship phrases, will be abstracted as hypertext node

names, since the node functions as an access point to the

text segment expounding on the concept-relationship duo.

Subsequently, these phrases become text object names.

Rai

Figure 3-2. OOD Object Visibility Representation

0
3.12

3.3.1 Methodology for Knowledge Base Decomposition

Recall the view of a hyperdocument taken here is a set

of text segments connected by hypertext links. This

abstract depiction of a textbase opens the door to several

lower level questions. How are the text segments created?

What level of abstraction should one segment maintain? How

many topics can be discussed in each one? What effect does

the decomposition process have on the teaching method of the

resulting CAI tutorial? These issues are addressed along

with the knowledge-base-to-textbase decomposition proposed

in this section.

In parallel to OOD, the present methodology provides a

mapping from one space to another. Since the product here

is an educational tool, the mapping is from an expert

knowledge base (a knowledge space) to a tutorial text space.

That is, the expert's knowledge is decomposed into text

segments which makeup a CAI tutorial textbase.

As in OOD, the decomposition begins at a high level of

abstraction. The starting point will be the central

concept, the theme of the tutorial. From there the goal is

to introduce progressively more detail, less abstract, less

inclusive concepts, and more specific examples, through

iterative application of the process. In this way, the

textbase will take, by default, a hierarchical structure.

3.13

Continuing the similarity to OOD, there are formal

* steps which govern the decomposition process.

1. State the thesis of the tutorial in a single sentence.
2. Expand the sentence into a high level paragraph.
3. Identify the key concepts.
4. Identify the relationships between the key concepts and

the paragraph theme.
5. Review and revise.
6. For each new concept repeat steps 1-5 as needed.
7. Encapsulate related concepts in a single object-module.
8. Implement text links in hypertext.

Many of the steps are performed in an OOD-like manner. A

complete description of each step is presented below.

1. State the tutorial thesis in a single sentence.

This step is analogous to the first step in the OOD process.

The intent is to clarify the theme of the tutorial. This

step will establish the highest level of abstraction, the

Smost inclusive concept(s) the tutorial will address.

2. Expand the sentence into a high level Paragraph.

As in Step 1, this step nearly parallels its OOD

counterpart. The paragraph should be five to nine sentences

long (with exceptions noted below), and should maintain

approximately the same level of abstraction as the single

sentence on which it expands. The objective is to introduce

applicable high level terms, principles, etc., which relate

to the immediate concept or theme. By the time the

paragraph is completed, the scope of the information to

follow should be clear to the reader. That is, only

0
3.14

progressively finer detail should be encountered throughout

*the rest of the tutorial.

In contrast to the OOD method, there is latitude for

additional paragraphs, if the tutorial is sufficiently large

enough to warrant them. There is an important point to

consider which will justify the acceptability of more

paragraphs. Since the tutorial structure will be

hierarchical, there may be several lower level concepts to

explore from the discussion of a single higher level

concept. After the reader traverses links to some text

several levels of abstraction lower, he must return to

higher levels to begin a new path through the document.

Consequently, a reader may face the same screenful of text

several times as he returns to explore new trails.

Thus, the use of more than one paragraph may help the

reader feel a sense of progression through the document and

closure of the entire document, even as he returns to the

same high level. In any case, the decision for multiple

paragraphs in a single display will be left to the judgement

of the tutorial designer on an individual basis.

For any paragraph, however, these guidelines apply:

a. Write at a constant level of abstraction.

b. Provide the reader with the highest level, most

inclusive concepts that apply at the current level of

3.15

abstraction. This allows the reader to view lower

* level details in relation to these broader concepts.

c. Write to call attention to key concepts which will

be given lower level, more detailed explanations later

in other segments of text. These concepts, the nouns

and objects in the text, will become hypertext nodes.

d. Write to expound on the relationship between the

paragraph theme (a concept-relationship pair) and the

higher level paragraph in which it was introduced.

Elaboration of the details of relationships is the

raison d'&tre for each new text passage.

e. Write to make explicit the relationships between

* the paragraph theme and each lower level concept

introduced in the paragraph. Relationships should take

the form of object phrases, with the new concept being

the object. The objective is to whet the reader's

appetite for more detail, while maintaining the current

level of abstraction.

3. Identify the key concepts (from Step 2c). Select

only those concepts which are at a level of abstraction

consistent with the entire paragraph. These should be the

objects in a correctly written paragraph (as per Step 2).

Some consideration must be given to the determiniation of

which objects are consistent with the current level of

0
3.16

abstraction. It is important to exclude the selection of

concepts which, though germane to the topic, are not at the

level of abstraction the paragraph represents.

4. Identify relationships between new concepts and the

paraQraph theme. According to Rule 2e, relationships are

articulated as object phrases, i.e., verb phrases which take

an object. The objects are the concepts identified in Step

3. Ideally, an entire object phrase will become a hypertext

node and a new text object theme. While this step should

follow cleanly from well-executed Steps 2 and 3, in some

cases adjustments must be made for the sake of clarity and

for the final hypertext implementation.

a. For implied relationships between the paragraph

theme and a new concept, consider rewriting the passage

to make the relationships explicit.

b. For a series of concepts separated by commas, a

relationship will be considered explicit for each

concept in the series. For example, consider the

sentence "The electronic mail facility delivers mail,

error messages, and system notices." The explicit

relation "delivers" is attached to "error messages" and

"system notices", as well as "mail." The three

relationships might each warrant their own detailed

paragraphs at a lower level, but the relationship

"delivers" must be the linking relationship to each.

0
3.17

Consequently, the next level paragraph for each object

would key on a "delivers" relationship (see Step 2d).

5. Review and revise. Review each paragraph to ensure

a constant abstraction level is maintained internally.

Check for concepts which may best be introduced at a

different level of abstraction. Determine which, if not

all, concepts and relationships selected in Steps 3 and 4

should be expounded on in more detail. Revise paragraphs as

necessary to reflect these decisions.

6. For each new concept, repeat Steps 1-5 as needed.

Repetition of Step 1 is optional, but is recommended as a

good rule for setting the theme of any paragraph (Hodges and

Whitten, 1982:347-349). Iterate the process until

sufficient detail has been revealed; however, there are

trade-offs to consider.

Too much detail could force the reader down a path of

numerous links. Even within a hierarchy, some form of

disorientation due purely to excessive depth of detail is

possible. At this point, the reader may neither understand

nor remember the trail of relationships which account for

the current level of detail. In addition, with more than a

few such excessively long paths, the reader may become

exhausted and frustrated. Consequently, he may no longer

desire to browse the document, but instead only to finish,

thus mitigating the educational effect of the tutorial.

3.18

In contrast, too little detail may not sufficiently

satisfy the intellectual appetite of the reader. Of course,

the academic objective of the tutorial will ultimately

govern the depth of knowledge presented. Two or three new

links is a suitable average.

7. Encapsulate related concepts in a sinQle obiect.

Recall that in the OOD methodology, the encapsulation of

data types and operations specific to a single object

provided a modular, abstract representation of a program's

structure. One abstract view of an object is as a warehouse

of data types and operations which can be used within the

object itself or by other objects. In the Ada programming

language, this abstraction takes the form of a package or

abstract data type (Booch, 1987:218-219). At the same level

of abstraction, a modular view may be taken of a hyper-

document composed of text objects. Objects encapsulated in

this way will be referred to as "object-modules."

8. Implement text links in hypertext. Once the

decomposition is complete, the remaining step is to

implement the tutorial using hypertext. Using the

constructs of a hypertext "language," establish links to

connect related paragraphs using the node names selected in

Steps 3 and 4. Take advantage of window titles and multiple

on-screen windows if the environment provides for them.

3.19

3.3.2 Text Object Representation

In the methodology presented in this chapter, an object

is a collection of one or more text components, available to

other objects or to itself alone. From a hypertext

perspective, an encapsulated text object is simply a

collection of nodes or link markers. These nodes link to

segments of text or graphics, which form the hyperdocument

(see Figure 3-3).

It follows from the definition of "hyperdocument" and

the concept of hypertext, that the structure of a readable

hyperdocument will be determined by the linkages between the

Exportable

Passag'is

Figure 3-3. Encapsulated Text Object Representation

3.20

text objects of which it is composed (see Chapter 2 or

Conklin, 1987b:19). In this way, the "packaging" of text in

different objects, when it places constraints on links

between segments, influences the hyperdocument architecture.

The types of constraints considered here are those which

conceal one text segment from others, or which make the same

segment available to several others. This notion closely

models the OOD concept of visibility (Booch, 1987:49) and

the software engineering principle of information hiding

(Pressman, 1987:336). Figure 3-4 is a depiction of

visibility between text objects.

0oJec

o JOC%. 0 JeS' ojct

object 5 o ject-6

Figure 3-4. Typical Text Object Visibility Structure

0
3.21

This work considers the visibility constraint to be a

key to regulating and manipulating the structure of a

hypertext document. Now focus shifts to lower levels of

abstraction, to the inside of the object-module.

3.3.3 Two Candidate object Representations

Keying on the influence of visibility on hyperdocument

structure, two different, if not antithetical models of an

encapsulated text object are considered, each permitting a

different visibility structure. This section will detail an

object's structure and contents using both models, and

discuss their impact on hyperdocument architecture.

3.3.3.1 R-O Model for Text object Structure. The

"Relationship-to-Object" representation views a text object

as a module, or object-module, whose subject is a single

concept-relationship pair. The subject name is a noun or

noun phrase, e.g. "books." The module's callable components

are text segments, abstracted as hypertext nodes whose names

contain the module's subject.

Nodes are named as object phrases whose object is the

module name, e.g. "writes books" and "as opposed to books"

(from decomposition Steps 3 and 4). The nodes represent

text passages which elaborate on the relationship between

the subject of some calling text passage and the object-

module, "books" (from Step 2). This representation of an

0
3.22

object will be referred to as the "Relationships-to-Object"

(R-O) model, since an object-module's components reflect the

relationships of other obiects to itself (see Figure 3-5).

Consider as an example of the R-O model, a

hyperdocument composed of several text passages (refer to

Figure 3-6). One section of text whose subject is "Scholar"

contains a hypertext node "writes books." "Writes books" is

encapsulated in the "books" object. Similarly, a paragraph

with the theme "Hypertext" calls the "books" node named "as

opposed to books." In both cases a reader activating either

node would be shown (e.g. in a new window) the text which

0OBJECT

,lationship I
to Object

elationship 2
to Object

elatiariship 3
to Object

Figure 3-5. R-O Object Model Representation

3.23

the nodes represent, which presumably elaborates on the

themes of how a scholar writes books and how hypertext is

used as opposed to books, respectively.

Continuing the example, let there be other text

passages, "collection of books" and "printed in books."

These nodes are referenced in paragraphs which discuss

"Encyclopedias" and "Photographs," respectively. The

objects which encapsulate these text segments, as well as

the "Scholar" and "Hypertext" segments, must have visibility

to the "books" object-module. In addition, there may easily

be visibility between "Hypertext" and "Photographs," based

on some (hypothetical) discussion of a relationship between

the two concepts.

0

I o~~ee.a lOS

I .lo
Po.lt.i on olooks

Scholar% £nceilopedissi

Figure 3-6. R-O Object Model Visibility Structure

3.24

3.3.3.2 Evaluation of R-O Model. What are the consequences

of the visibility structure of Figure 3-6? From a software

engineering perspective, an R-O object parallels almost

exactly an OOD object. That is, an R-O object encapsulates

a set of components, available to every object to whom they

are visible. Consequently, any writer with "access" to the

object's contents for the use of one node, could just as

easily reference any other node. In the example above, the

"Hypertext" paragraph has access to the "printed in books"

node and the text to which it is linked, though this may not

serve any purpose in the tutorial.

Additionally, as in the "books" example, many objects

may require visibility to the same object. This raises the

possibility of ambiguity with respect to node names. In the

example, suppose another paragraph, entitled "Libraries"

also needed to link to a "collection of books" node. Either

another "collection of books" paragraph would have to be

included in the books object which elaborated the

relationship between "Libraries" and "books," or the

original "collection of books" paragraph would have to be

rewritten to include "Libraries."

In the former solution, how would the two paragraphs,

in node representation only, be distinguished one from the

other? This situation resembles Raskin's "Monarch" example,

and as such reflects a peril of a network structured

3.25

hyperdocument (Raskin, 1987). In the latter solution, a

* reader in the "Encyclopedia" paragraph who activates the

"collection of books" node would be forced to read of the

significance of "Libraries" as a "collection of books" as

well. When the goal of the CAI tutorial is understanding

relationships between a couple of concepts at a time, this

solution must also be rejected.

The two solutions proposed above assume no

sophistication in the hypertext environment which would be

able to discern the intended node based on the context in

which a particular reference occurred. Indeed, in the

unintelligent environments for which this work is targeted,

a means is sought where references can be context free,

dependent only on the packaging of text segments. To that

end, a second object model will be examined in the next

section.

Finally, what is the impact of the R-O model on the

coupling and cohesion of the text segments encapsulated in a

single module? There is generally little or no coupling

between individual text segments. However, since visibility

between objects is so unrestricted, it is conceivable that

one segment in an object could call another segment in the

same object. For example, the discussion of "writes books"

might reference pictures which are "printed in books," thus

coupling the segments "writes books" and "printed in books."

3.26

Cohesion in this case is clearly syntagmatic

(Hammwohner and Thiel, 1987). That is, the only reason text

passages are included in the same object is that they all

share the same grammatical object, by name. This is viewed

as poor cohesion, since the text passages as a collection do

not combine to edify or clarify the theme "books." Compare

this syntagmatic cohesion to the semantic cohesion

demonstrated in the O-R object model in the next section.

3.3.3.3 O-R Model for Text Object Structure. The "Object-

with-Relationships" (O-R) model is so named because it

encapsulates in an object the nodes which express

relationships the object has with other objects. In this

case, the object has its subject as its name. The subject,

a concept in the tutorial, is expressed as a noun or clause

containing an object phrase (from Step 4), e.g. "health" or

"improves health."

The encapsulated object contains a paragraph and zero

or more node names (Figure 3-7). The paragraph references

relationships between the subject and other concepts (from

decomposition Step 2). The relationships are abstracted as

hypertext nodes (from Step 4). In contrast to R-O, the

nodes (representing new objects) are visible only from

within the object, being referenced only from the object's

own text. Clearly, the node visibility structure is nested.

3.27

OBJECT NRNE

Text passageI

ref erIenceCs
nested Mods (obJecL e
Iower Level (b a /
objects
(represented
by node names) Node (object) name 2

Object L Object 21

Figure 3-7. O-R Object Model Representation.

As an example of using an O-R model, consider the

concept, "seed." "Seed" is the subject of an object, say

"Planting Seeds," and may contain nodes "eaten as food,"

"become plants," and "produced by vegetation." These nodes

link to paragraphs which elaborate on the relationship

between a "seed" and "food," "plants," and "vegetation,"

respectively. Notice that the nodes encapsulated in

"Planting Seeds" are exactly those nodes to which the "seed"

paragraph will make reference. This is a distinguishing

characteristic of the O-R model of object representation.

3.28

3.3.3.4 Evaluation of O-R Model. What are the consequences

of the O-R model? From an OOD standpoint, an O-R object

does not function exactly the same as, say, an Ada object.

The O-R organization results in a module which demonstrates

loose coupling between its components. In the example

presented above, the paragraphs on "eaten as food," "become

plants", and "produced by vegetation" are independent and

can be altered with no effect on each other.

The O-R model demonstrates semantic cohesion. This

holds since each component of an O-R module is related, in

context and in content, to the module's subject concept.

Intuitively, this semantic relationship (Hammwohner and

Thiel, 1987) between each passage and the object's subject

is more cohesive than the syntagmatic cohesion of the R-O

model. The researcher will refrain from extending the

comparison beyond relative differences, however, since the

theory of cohesion and coupling of text modules is beyond

the scope of this work (see Hammwohner and Thiel, 1987).

Lastly, and most importantly to this work, is the

hierarchical structure which is inherent in the O-R text

object representation. In the example above, the "seeds"

paragraph could call any of its three subordinate

paragraphs, which in turn could call any of their own, and

so forth, depending on the number of levels of embedded

text. Additionally, this hierarchical structure mitigates

0
3.29

the effects of reader disorientation, since the reader is

always firmly within a hierarchical ordering.

3.3.3.5 Contrasting O-R to R-O. With a discussion of both

the R-O and O-R object representations complete, a

clarification of the distinctions between the two might be

helpful. From an abstract perspective, the general

structure of the two models was previously presented in

Figures 3-5 through 3-7. In addition, a tabular, "compare

and contrast" depiction is provided in Table 3-1.

3.3.4 Representation Used in this Thesis

Some of the differences between the O-R and R-O text

object representations may seem little more than cosmetic.

However, as the evaluation of each model reveals, there are

significant differences in the textbase structures the

models allow. Depending on the specifics of the hypertext

environment used to implement the tutorial, the R-O model

may result in a typical hypertext network structure, the

pitfalls of which have been presented earlier. On the other

hand, the O-R model will enforce a tree-like textbase

structure, which we have required from the outset. For this

primary reason, the O-R model will be used in the remainder

of this thesis.

3.30

Table 3-1. Summary of R-O vs. O-R Model Characteristics

Object Model

R-O O-R
Characteristic

contents node names text passage and none or
more node (object) names

levels of possibly many only one
abstraction
represented

relationship object name is object name is generally
of contents object of node (implied) subject of node
to object names names
name

other objects possibly many none
with visi-
bility to
contents

object network hierarchy
visibility
structure

direction of from others to from self to
visibility self others

intra-object/ little or none none
inter-text
coupling

intra-object/ syntagmatic -- semantic --
inter-text relatively relatively
cohesion low high

conformity to almost exactly less so
OOD object

earliest en- after complete after single iteration
capsulation decomposition

0
3.31

3.4 Summary

This this pivotal chapter closes with a review. The

need for formal structure in a tutorial textbase was

established first. Key motivators were Ausubel's learning

theory and some weaknesses of an unchecked hypertext

network. Subsequently, the research turned to the field of

Software Engineering to borrow the structure produced by the

Object-Oriented Design paradigm.

The present knowledge base-to-textbase decomposition is

adapted from the OOD methodology. It facilitates an object-

oriented approach to the design and construction of a

tutorial textbase, for which two alternate object-module

representations were presented. The Object-ith-

Relationships (O-R) model was chosen for use in the

remainder of this thesis, since it enforces the hierarchical

structure desired of a well-structured hypertext textbase.

3.32

0 4. Example Knowledge Base Decomposition

4.1 Introduction

This chapter presents an example knowledge base

decomposition using the methodology described in Chapter 3.

Recall that from that chapter, the steps of the methodology:

1. State the thesis of the tutorial in a single sentence.
2. Expand the sentence into a high-level paragraph.
3. Identify the key concepts.
4. Identify the relationships between the key concepts and

the paragraph theme.
5. Review and revise.
6. For each new concept repeat steps 1-5 as needed.
7. Encapsulate related concepts in a single object.
8. Implement text links in hypertext.

The rest of the chapter is a step-by-step application

of these decomposition steps to a knowledge base. The

result will be a set of text passages which are incorporated

into a hypertext-based computer-assisted tutorial. Note:

The decomposition presented in this chapter is primarily for

illustrative purposes. Some lowest levels paragraphs will

be omitted here, but will appear in the final tutorial (see

Appendix B).

4.2 An Example Using the Decomposition Methodology

The tutorial topic is the Ada programming language.

More specifically, the tutorial describes Ada with respect

to elements which distinguish it from most other programming

0
4.1

languages. The purpose of the tutorial is to help the

reader assimilate the relevant concepts and the hierarchical

relationship structure of those concepts. The "expert"

knowledge base for the decomposition is an article entitled

"Why Ada is Not Just Another Programming Language" (Sammet,

1986), This article was selected because it discusses Ada's

distinguishing characteristics in multiple levels of detail,

which the decomposition methodology will extract. The

contents of the article are excerpted and paraphrased in the

passages created below. Additional citation credit will not

be given in the remainder of the decomposition.

4.2.1 State the tutorial thesis in a single sentence

Ada can be distinguished from the majority of other
computer languages on many technical and nontechnical
merits.

4.2.2 Expand the sentence into a high-level paragraph

Ada can be distinguished from the majority of other
computer languages on many technical and nontechnical
merits. On non-technical grounds, the ordered design
and development processes which produced Ada are unlike
those of any other proqramming language. Additionally,
Ada has attracted strong interest from users and
enthusiasts in the international computing community,
outside the Department of Defense. With regard to key
unique attributes of its technical elements, Ada offers
high-level programming features which contribute to
Ada's support for software engineering principles.

4.2.3 Identify the key concepts

The concepts introduced in the high level paragraph are

shown underlined. They are essentially the nouns and

objects in the text. Keeping in mind that a high level of

4.2

abstraction is sought early, only a subset of those concepts

qualify as high-level concepts. That is, although the

passage may contain many concepts, only a few are at the

level of abstraction consistent with the focus of the

paragraph. The subset of key concepts can be narrowed to:

design and development processes
strong interest
high-level programming features
software engineering principles

The selection is not arbitrary. Notice that although

"language" is an abstract concept, it does not exhibit a

relationship with the theme of why Ada is different from

other languages. The same holds for "Department of

Defense," which, although an essential high-level concept,

O is not expressed in a relationship which edifies the

paragraph's theme. Thus, abstraction maintenance sometimes

requires carefully considering the role of a concept in a

paragraph, even in the whole document.

4.2.4 Identify the relationships between the key concepts

and the paragraph theme

Following up on the results of Step 3, identification

of the relationships of each concept to the paragraph theme

requires little more than capturing the object phrases in

which they appear. In this case, the result is:

4.3

OBJECT RELATIONSHIP

processes processes which produced Ada
strong interest Ada has attracted strong interest
programming features Ada offers high level... features
principles Ada's support for.. .principles

As a point of clarification, the first relationship may

seem at first glance to be improper. Indeed, it does appear

reversed, with the theme, "Ada," as the object and the

object, "processes," as the subject. This apparent breach

of the methodology is accepted for now, and left for Step 5,

where such issues are addressed. The remaining

relationships appear straightforward, and clearly relate

their respective objects to the paragraph theme.

4.2.5 Review and Revise

At this point, the tutorial theme has been clearly

stated and the scope of the tutorial has been bounded in a

single paragraph -- or have they? This is the step in the

process reserved for sufficient review to answer such

questions. Should more concepts be added? Should the main

paragraph be reworded to make the relationship between Ada

and the Department of Defense explicit? In other words, has

this paragraph established here everywhere it intends to

take the reader for the rest of the tutorial? Do only lower

level concepts, details, elaborations, and explanations

remain? There should be no high-level surprises for the

reader later in the document.

4.4

What about the selection of key concepts and their

relationship to the subject? Are they firm? No. The

question of the "process which produced Ada" relationship

was raised earlier. Technically, the sentence could read

"Ada was produced by a unique design and development

process." Although the sentence could be reworded to

correct this transposition, in this case it was not. The

wording was chosen for the sake of style and readability,

and to bring up this point: ideally, every object selected

should actually be a grammatical object; however, variety in

sentence structure and readability sometimes dictate

otherwise.

4.2.6 Iterate the Process for each new concept

Before any attempt is made at encapsulation, the

process is iterated for each selected concept. However, it

is noteworthy that at this point in the process, putting off

encapsulation is not entirely necessary. The reason is that

under the Object-with-Relationship (O-R) model, the top-

level object titled "Ada is different" could be created

already. It would include nodes named for the four

relationships listed in Step 4. The convenience of as-you-

go encapsulation is an advantage of the O-R object model.

However, in keeping with the methodology, all encapsulations

will be saved for the stated place in the sequence of steps.

4.5

Before beginning iteration of the decomposition, a

decision must be made whether to proceed in a depth-first or

breadth-first fashion. Since a depth-first approach will

pursue a particular concept to its greatest level of detail

before starting another decomposition, a depth-first

decomposition is appropriate. Therefore, the decomposition

begins with the "processes which produced Ada" relationship,

extracting progressively more detail througout the process.

The Second Iteration. For convenience, and as a rule of

thumb, the one sentence topic statement (Step 1) will be

just an adaptation of the sentence used in the higher level

paragraph. That is:

The ordered design and development processes which
produced Ada are unlike those of any other programming
language.

Now expand the sentence to a full paragraph (Step 2) which

will bound the next lower level of detail. The result is:

The Ada design and development process initially
resulted from a software crisis in the DoD. Uniquely,
the process began with a formal recruirements statement
for a language to meet the DoD's embedded system
software needs. Also unique was the fact that the
initial language design was contracted to competitive
bidders, some from outside the U.S. and developed by a
corporate team, as opposed to the typical committee or
individual effort.

The DoD also established administrative controls
to govern implementation of the language product, both
its syntax and its compilers. And to a degree that had
not been experienced before, through all of these
processes, the DoD encouraged public feedback,
actually implementing valid recommendations when
possible.

4.6

From the text passage, these new objects (Step 3) and

0 relationships (Step 4) are the result:

OBJECT RELATIONSHIP

software crisis resulted from... software crisis
requirements statement began with.. .statement
competitive bidders contracted to competitive bidders
corporate team developed by a corporate team
administrative controls established administrative controls
public feedback encouraged public feedback

Assuming that the new concepts and their relationships

are a sufficient set and are satisfactorily worded (Step 5),

the decomposition process begins again (Step 6), proceeding

depth first from the "resulted from a software crisis"

relationship. The topic sentence (Step 1) is simply:

An impetus for the creation of Ada was a software
crisis within the DoD.

The elaborative paragraph (Step 2) becomes:

An impetus for the creation of Ada was a software
crisis within the DoD. The crisis was recognized in
1974 when a DoD report was issued, estimating a
software development and maintenance cost of over three
billion dollars. The DoD crisis was caused by a
proliferation of lanQuaQes within the department, which
severely restricted reusability of both software and
programmers.

The single new relationship (Steps 3 and 4) is

expressed in this next lower-level paragraph:

The DoD recognized a proliferation of programming
languages as a cause of its software crisis. The DoD
estimated there were literally hundreds of programming
languages and dialects in use on DoD projects. Each

4.7

new language required its own contracted maintenance
teams, which accounted for the astronomical cost.

Since no lower-level concepts were selected from this

paragraph for further decomposition, this portion of the

depth-first process ends. Note that even after having

reached a "dead end" in the decomposition process, the

subordinate relationship-concept pairs are not yet

encapsulated within their parent objects. Although with the

O-R model, encapsulation is now possible, this action is

deferred until near the end of the chapter. The process

continues again from the top of the chain of relationships.

The next relationship to expound on is the "process

began with...requirements statement" relationship. It is

the second of the "processes which produced Ada" paragraph's

new relationships. The topic sentence is:

Uniquely, the design for the Ada language was based on
a set of formal language requirement specifications.

Expanding the sentence into a more detailed paragraph:

The design for Ada was based on language requirement
specifications originally established in the DoD's
STRAWMAN document. The intent of the 1975 document was
to detail specifications for a language to be used in
DoD embedded computer systems. After some revision,
the document was re-released as WOODENMAN in early
1976. Later that year, the newer TINMAN revision was
released. TINMAN was used as a basis for evaluating
existing languages for suitability as the new standard
DoD language. TINMAN later underwent revision to
become the 1978 IRONMAN document. The IRONMAN
requirements were used at the time the design and
development process formally began, but a still later

4.8

revision, STEELMAN, was the final version which
governed the language development.

The single new relationship, "used as a basis for

evaluating existing languages," becomes:

The TINMAN document was used as a basis for evaluating
existing languages for suitability as the DoD's single
language for use in DoD software systems. Eventually,
ALGOL68, Pascal, and PL/I were selected as baseline
languages from which the new language would be
patterned, but from which it need not be compatible.
Among those considered were:

DoD/Embedded Computer Languages
CMS-2, CS-4, HAL/S, JOVIAL, J73, SPL/I, TACPOL

Process Control/Embedded Computer Languages (Europe)
CORAL66, LIS, LTR, PEARL, PDL2, RTL/2

Research-Oriented Languages

ECL, EL-l, EUCLID, MORAL

Widely Used/General Languages
ALGOL60/68, COBOL, FORTRAN, Pascal, PL/I, SIMULA67

With no new relationships selected from this paragraph,

the decomposition begins again at a higher level, returning

to the "processes which produced Ada" paragraph. The next

subtopic to expand is the "design contracted to competitive

bidders" relationship. The topic sentence is:

Unique to Ada, the design for the language was offered
to several competing contractors who were to come up
with independent language designs.

0
4.9

And the expanded paragraph is:

Unique to Ada, the design for the language was offered
to several competing contractors who were to come up
with independent language designs. Of over 15 original
bidders, only four were selected to continue. In an
effort to keep the design evaluations as unbiased as
possible, each design was referred to only by a color
(red, green, blue, or yellow). After the four
preliminary designs were reviewed by both military and
civilian agencies, the Red team (Intermetrics) and
Green team (Honeywell Bull) were selected to continue
designing. In the end, the french based Honeywell Bull
team won the development contract.

Since no new lower detail is pointed to, as before, the

process returns again to the parent passage to begin a new

depth-first decomposition.

The fifth relationship from the "processes..." passage

is "developed by a full corporate team." Dispensing this0
time with the topic sentence (since it is optional), the new

paragraph is:

In contrast to the "normal" development by an
individual or committee, Ada was developed by an entire
team of programmers from the France-based Honeywell
Bull corporation. Design decisions were made or
approved by the team leader, Jean Ichbiah.

Continuing the process, again without the topic

sentence, the next relationship to expand is "established

administrative controls."

The DoD placed administrative controls on the language
to prevent the same types of language non-portability
problems it currently faced. Additionally, the DoD
intended to save Ada from the fate of languages like
FORTRAN and JOVIAL, which have numerous versions and

4.10

dialects. To control growth of and changes to the
language syntax, the DoD early in the process secured
an Ada trademark and forbade subsets or supersets of
the language.

On a larger scale, and to provide for controls on
language implementation, the DoD set requirements for
compilers including their development and validation.
Lastly, the DoD planned for a programming support
environment, nearly from the outset. It is the
consideration of these issues so early in the design
and development processes which contributes to Ada's
distinction from other languages.

The new relationships were revealed in this passage are

listed below. Since this example is not intended to be

exhaustive, and since the complete decomposition is

presented in Appendix B, the decomposition of these new

relationships will not be continued here.

CONCEPT RELATIONSHIP

Ada trademark secured an Ada trademark
supersets/subsets forbade Ada supersets/subsets
compilers set requirements for compilers
environment planned for... support environment

Rounding out the "processes which produced Ada"

paragraph, the "encouraged public feedback" relationship,

the sixth concept-relationship pair selected from the parent

paragraph, is detailed. The new paragraph is:

A distinguishing element of the Ada design and
development processes was that throughout, the DoD
solicited and considered review and comment from the
international programming community. Public comments
were used in the series of revisions from STRAWMAN to
STEELMAN and in the evaluation of candidate language
designs. Also, the prototypical Preliminary Ada was
published in ACM SIGPLAN for commentary and review.

0
4.11

Since no new relationships were selected from this

paragraph, and since this was the last object in the

"processes which produced Ada" passage, the process moves up

the chain of text to the original highest level paragraph to

pursue a new branch of the hierarchy of concepts.

The Third Iteration. The next higher level relationship to

elaborate on is the "Ada has attracted strong interest..."

relationship. The topic sentence is:

Unlike other programming languages, Ada has attracted
strong interest from the international military and
civilian programming communities.

The more detailed paragraph is:

Unlike other DoD sponsored programming languages, (e.g.
JOVIAL, CMS-2, and TACPOL), Ada has attracted strong
interest from the international programming community.
Ada has been utilized in commercial and industrial
sectors in the U.S. and in military and commercial
applications in Europe. Additionally, Ada is the only
language which has sparked publications and conferences
which are dedicated solely to the advancement of the
language.

The new objects and relationships are:

OBJECT RELATIONSHIP

commercial sector accepted in the commercial sector
industrial sector accepted in the industrial sector
Europe accepted in Europe
conferences sparked the establishment.. .conferences

The paragraphs associated with each of these new

relationships are presented in succession below, with little

introduction.

4.12

Utilized in commercial...

Ada's wide acceptance has made it of interest to the
international commercial sector. Ada compilers, PC
versions, and software packages are becoming commercial
items, available via bulletin boards as well as through
commercial software vendors.

Utilized in industrial...

Ada is being used in industrial applications which are
not related to military projects. Its readability
coupled with facilities for numerical and data
processing have gained Ada a foothold in industry, in
both embedded and non-embedded software systems
applications.

Accepted in Europe...

Ada's applicability to embedded software systems
accounts for its growing popularity in foreign
militaries. European and NATO countries are beginning
to use Ada in embedded weapons systems and for
research.

Sparked the establishment of.. .conferences...

Ada is the subject of several publications and special
interest groups. ACM SIGAda iz dedicated to Ada
applications and research. In addition, Ada has to its
credit international conferences and quarterly special
interest group meetings. No other language has
received this intense international attention.

The Fourth Iteration. Since none of the above paragraphs

introduced any new concepts to be further elaborated, the

methodology returns attention to the main paragraph to begin

detailing the "Ada offers.. .high-level features"

relationship. The topic sentence is:

From a technical perspective, Ada offers many specific
high-level programming features provided by no other
single language.

0
4.13

The extended paragraph becomes:

From a technical perspective, Ada offers many specific
high-level programming features provided by no other
single language. Ada combines some of the features and
constructs of Pascal, ALGOL, and PL/I, with some of its
own unique features. The most important of Ada's
features is the facility of packaging. Ada also
offers:

strong data typing real-time processing
generics exceptions
tasking overloading
numeric processing separate compilation
representation clauses

This high-level paragraph does not reference any new

concepts that are within the scope of the tutorial, so we

return to the highest level paragraph and begin again.

The Fifth Iteration. The last remaining object-relationship

in the highest level paragraph is "support for software

engineering principles." The topic sentence is:

In many ways, Ada directly supports the principles of
software engineering.

The more detailed paragraph is:

In many ways, Ada directly supports the principles of
software enaineering. Ada is designed around the
software component, as reflected in the modular
properties of separately compilable packages and
subprograms. Ada supports abstraction and information
hiding by providing strong data typing and private
types. These constructs govern visibility or access to
code. Ada generics and stubbed package specifications
lend support to reusability and modularity concerns.
Overall, Ada supports many software engineering
desirables including:

0
4.14

structured programming reusability
top-down development modularity

0 strong data typing portability
abstraction readability
information hiding verifiability
encapsulation
separately compilable specification and body

While included in the original knowledge base (Sammet,

1986), further elaborations on Ada's support for each of the

listed software engineering principles are beyond the scope

of this tutorial. Therefore, no further details will be

extracted.

4.2.7 Encapsulate the Objects and Relationships

As referenced earlier, under the constraints of the O-R

object model, encapsulation is a simple matter. A single

0 object contains its theme passage and the node names of the

objects it references. In the example presented in this

chapter, including the sections deferred to Appendix B, the

last objects elaborated on in each depth-first decomposition

will be encapsulated first. In the end, the main module

will hierarchically encapsulate all others. The

encapsulated objects for this tutorial are depicted in

Appendix A from the highest level down to the lowest.

4.2.8 Establish Text Links in Hypertext

The actual hypertekt nodes (link markers) are taken

directly from the concept-relationship pairs selected for

further decomposition during each iteration of the process.

4.15

For example, in the main paragraph, link markers bear the

* names:

processes which produced Ada
attracted strong interest
offers high-level programming features
support for software engineering principles

The implementation of this example tutorial used the

facilities provided in the KnowledgePro expert system

environment. KnowledgePro offers the capability to title

the new windows which appear when nodes are activated. In

the hypertext implementation of this tutorial, the window

titles were used to emphasize the relationships which are

expounded on in the window text. For example, in the window

which was opened through the "processes which produced Ada"

node, the window title was "Unique Design and Development

Process." In this manner, the titles of embedded windows

express the chain of relationships which have led to the

current window (see Figure 4-1).

Additionally, a brief introductory instructional

session was incorporated into the finished tutorial product.

Its intent was to introduce the student to the peculiarities

of the KnowledgePro environment, and give the reader

practice at selecting and activating nodes, as well as

opening and closing windows.

4.16

-ADA 1S DIFFERENT FROM OTHER LANGUAGES
iUnque Design and Development Process

administratively controlled Ada
1

ianned support environment
rovide integrated toolset

The APSE provides an integrated toolset to aid a programmer
ntaking full advantage of the complex Ada langauge. :.I

addition to the compiler, the basic tools include:

editor configuration manager
linker JCL interpreter
loader debugger

The Common APSE Interface Set (CAIS) is a set of Adapackages which provide for interfaces between these tools.

F1 Help F5 Evaluate F7 Edit Pg 1 of I
Space Cont. F6 Display KB F8 DOS FI0 Quit

Figure 4-1. Use of Window Titles to Re-enforce
Relationships.

4.3 Summary

This chapter has presented an example knowledge base

decomposition using the methodology proposed in Chapter 3.

The actual textbase of the tutorial product is included in

Appendix B. By actually stepping through the formal

process, we have gained an appreciation for some of the

exceptions which must be made when actually putting the

methodology to use. In sum, 1) object phrases must

sometimes be worded for clarity and variety, despite an

apparent conflict with the rules of the methodology; 2) it

0
4.17

is not always the case that every concept be detailed to

numerous lower levels of abstraction; and 3) sometimes the

elaboration of a seemingly germane concept must be postponed

to a lower level, where it fits in a more explicit

relationship to some other concept at a more appropriate

level of abstraction or detail.

0

4.18

5. Validation of the Decomposition Methodology

5.1 Introduction

This chapter presents the evaluation of the tutorial

design methodology presented in Chapter 3, and demonstrated

by example in Chapter 4. In validating the mechanized

process, whose end product applies to the cognitive domain,

both objective and subjective measures were necessary. The

validation process used in this chapter involved four

evaluation tools, which in the aggregate provided both types

of measures. Three of the four validation procedures were

accomplished through an experiment involving graduate

students. The remaining evaluation enlisted the attention

and expertise of two graduate instructors. The format and

results of each of these evaluation procedures are discussed

in the remainder of the chapter.

5.2 Data Extraction by Experiment

This section describes the set up and execution of the

experiment involving a single class section of graduate

computer science students. Collection of data for all but

the first of the evaluation tools was directly linked to the

experiment. Discussion of the single exception is deferred

until the next major section, when all four tools are

discussed in detail.

5.1

0 5.2.1 Experimental Design Overview

The one-time experiment was designed around Campbell

and Stanley's "Pretest-Posttest Control Group Design"

(Campbell and Stanley, 1963:13-24). The basic experimental

model requires random assignment of subjects to either a

control or experimental group. Random assignment

facilitates pre-treatment equivalency. All subjects in each

group are given a pretest, the control or experimental

treatment (as applies), and a posttest. The variable of

statistical interest is the average gain score for each

group. Assuming the key threats to the validity of the

experiment have been controlled or eliminated (Campbell and

Stanley, 1963:13-24), the experimental group is expected to

show a statistically significant increase in the pretest-

posttest gain score, over that of the control group.

5.2.2 Execution of the Experiment

The subjects in the experiment were a single class

section of students. The whole process was conducted over

two class periods and a laboratory session. Both the

testing and the administration of the control and

experimental treatments were conducted as routine class

assignments. This was done to mitigate the "Hawthorne

effect," i.e., to remove any bias associated with the

subjects' knowledge of participation in an experiment

(Woolfolk and McCune-Nicolich, 1984:36).

5.2

Random Assignment. Ten members each of the class of 20

students were randomly assigned to either the control or

experimental group using the simple randomization process

outlined below. The random numbers used in the assignment

routine came directly from a table of random numbers (CRC,

1973:629-632).

1. Proceed sequentially across the rows of the random
number table and down an alphabetized list of students,
assigning a random number to each student.

2. Determine the median of the random numbers assigned to
students in the list.

3. Assign students whose random number is below the median
to the control group.

4. Assign students whose random number is equal to orO above the median to the experimental group.

Assigning students from the same class section in this

manner satisfied the requirement for randomization. Note:

in keeping with a conscious effort to mask the presence of

an experiment, students were neither informed of their

assignment to any group, nor that such groups existed, until

after the posttest phase of the experiment had been

completed.

Pretest. The pretest was given by the class instructor

in lieu of a regularly scheduled in-class feedback quiz.

Students were given the assignment explained in Section

5.3.2.

5.3

Treatments. The control and experimental treatments

were administered by the course instructor in a regular

laboratory following the class in which the pretests were

given. Both treatments were computer-based versions of the

Ada-related article used as a knowledge base in Chapter 4

(Sammet, 1986). The control treatment was several main

sections from the article entered directly into a computer

file, which could be read only in a strict "page-up," "page-

down" manner. The sections used were those whose subject

content was also represented in the hypertext-based

tutorial, the experimental treatment. The experimental

group was asked to use the hypertext-based tutorial, as

designed via the Chapter 3 methodology. (Note: the content

equivalency of the two versions was verified and is

discussed in the next main section). Only one group

treatment was administered at a time, and each group of

students was unaware that its treatment differed from that

of the other group.

Posttests. The posttest and two additional measures

were given to the students in the following class meeting,

four days later. The contents and intent of each of these

evaluation tools is provided in the next section.

5.4

5.3 Evaluation Tools and Their Uses

It is important to clarify at the beginning of this

section that no formal process was undertaken to validate

the correctness and completeness of the steps which comprise

the decomposition process. This apparent breach is not

viewed as a deficiency in the overall evaluation. The

justification of the omission is that the decomposition and

design process is itself based largely on the proven Object-

Oriented Design (OOD) paradigm, as discussed in Chapter 3.

(For a more rigorous discussion of objects and OOD, see

Pressman, 1987 or Bralick, 1988). Instead, attention was

turned to the evaluation of the effects of the methodology's

end product, the hierarchically structured, relationship-

driven tutorial.

5.3.1 Pre-experiment Content Equivalency Check

The four-part evaluation process began with a validity

check on the content of the tutorial developed in Chapter 4.

Two instructors, considered experts on the tutorial subject

matter, were given a copy of the hypertext-based tutorial

and the original article from which it was derived (see

Sammet, 1986). Through a series of questions (see Figure 5-

1), the instructors evaluated whether the non-linear

tutorial version and the linear printed version covered the

same material. In addition, the instructors were asked to

provide comments with respect to

5.5

Computer-Based Tutorial Validation Questionnaire

I. NSTRUCTORS: Your assistance is required for a portion
of the validation of a computer-based tutorial. The subject
matter is the Ada programming language. (Lt. Talbert will
assist you in accessing the tutorial).

2. Please read the attached article, 'Why Ada is Not Just
Another Programming Language' by Jean Sammet. Then read
through the tutorial whose information content was taken
from the article.

3. After reading the two versions. please thoughtfully
answer the questions presented below. Please return your
responses to Lt. Mike Talbert by 26 Aug 88.

QUESTIONS

Were the concepts at the highest level of abstraction
(most encompassing concepts/ideas) consistent between the
two media? Be specific if you do not answer "yes.

2. Did the computer-based tutorial present the same level
of detail as the article, especially with regard to the
topics addressed, examples, illustrations, etc.' If not,
please be specific in your response.

3. How did you perceive the physical presentation of the
tutorial impacts a reader with respect to ease of reading,
visuai effect of the video d:spiay terminal, color, reverse
video, etc.0

4. What SINGLE recommendation would you make for improving
the tutorial, with regard to issues not addressed in
questions 1-37

Figure 5-1. Tutorial vs. Article Content-Equivalency
Questionnaire

5.6

the understandability, ease of reading, and physical

presentation (e.g. color, typography) of the computer-based

tutorial. The instructors' recommended changes were

incorporated into what became the final version of the

tutorial.

5.3.2 Pretest and Posttest Concept Diagrams

The second, and primary method of evaluation was, like

the first, a combination objective/subjective measure. Its

purpose was to evaluate what effect the tutorial, i.e. the

experimental treatment, had on the students' method of

structuring the concepts presented in it. The question of

interest was: did the group who viewed the non-linear

tutorial begin, with the posttest, to structure concepts in

a hierarchy of abstraction, as was the structure reflected

in the tutorial? If so, did they do so more than did the

group who read the article in a linear fashion, without the

emphasis on a hierarchy of relationships?

As a source of numerical and subjective data from which

to derive an answer to the above questions, the students

were given the pretest and posttest shown in Figure 5-2.

This concept diagram approach to testing, personally

recommended by Gowin (1988) for the present work, provides a

"snapshot" of the students' understanding of the

relationships among a set of concepts, both before and after

the treatments (Novak and Gowin 1986:93-108). In this case,

5.7

:N-CLASS ASSIGNMENT

1. Consider the following alphabetical list of concepts
which are related to Ada. with respect to Ada's distinctive
place among the many other computer programming languages.

Ada conferences
Ada publications
Ada subsets
Ada supersets
Ada trademark
administrative controls
commercial sector
competitive bidding
compiler specifications/validation
corporate language development team
design/deveiopment process
DoD software crisis
existing programming languages
formal language requirements
high-level features
industrial sector
integrated toolset
proliferation of programming languages
programming environment

public involvement/feedback
software engineering principles
STONEMAN document
strong interest outside DoD
TINMAN document

2. Using the node provided below as a start, hierarchically
organize the concepts in a concept map as you perceive or
understand the relationships between them. Place more broad
concepts near the top and more detailed concepts near the
bottom of the diagram. Use explicit relationships between
concepts as links in the concept map.

Ada differs
from other languages

3. Draw your concept diagram on a separate sheet of paper.

4. Turn in both your diagram and the assignment handout.

Figure 5-2. Pretest and Posttest In-Class Assignment

5.8

the concepts of interest were those listed on the tests.

* Their concept diagrams were compared to a master diagram

(Figure 5-3), which depicts the concepts and their

relationships as expressed in the tutorial. Scores were

awarded to the diagrams on a node-by-node basis, with

respect to how the students' diagrams resembled the master.

Concept Diagram scoring Scheme. There exists little

guidance on objective evaluation of subjective concept

diagrams, but Novak and Gowin have outlined a two-

dimensional scheme which combines both objective and

subjective measures (Novak and Gowin, 1984:105-108). The

dimensions are 1) the placement of a ccncept in the

hierarchy and 2) the wording of the relationship between two

concepts. The scoring methodology used for this thesis is a

variation on Novak and Gowin's theme.

In accordance with Novak and Gowin, the first dimension

receives a multiplicatively higher weight than the second

(Novak and Gowin, 1896:107). In this case, the relative

placement of concepts in the hierarchy receives a weight

between three and five times that of the relationship

wording. Specifically, with an arbitrarily chosen maximum

of 30 points for each relationship-concept pair, node

placement is scored from 0-25 points (in values of 0, 5, 15,

20, and 25). Relationship wording is scored from 0-5 points

(in values of 0, 1, 3, and 5).

5.9

0

EL Q

o=

-~ E

-C a

0 0

0 1

Go /

C 7 L

In; C

- isEr i

M ---

Gooo +' -: 3

t ~to

o ,, . ,, _,

. a.

"~ i

5

C W

cn CK

SFigure 5-3. Master Concept Diagram

5.10

In general, the scoring methodology compares the

placement of a concept beneath a parent concept in the

hierarchy to the same placement in the master diagram.

Highest point values are assigned to exact parent-child

placement, and lower values are given for approximations

(inverting parent and child or leaving out an intermediate

node). These approximations are incorporated in the scheme

to allow for instances where students recognize that a

concept is related to another, but do not represent the

relationship in the correct hierarchy of abstraction.

Other incorrect node placement is judged subjectively;

three possibilities are included in this scoring system. If

the relationship is true but not expressly stated in the

treatment readings, it receives five points. If it is

logical based on a misinterpretation or perceived ambiguity

of the concept wording as expressed in the pretest and

posttest, then five points is also awarded. The award of 5

points for these logical errors, as compared to 15-25 points

for exactness or approximation errors, will provide a

numerical basis for indicating whether a student has

received and begun to recognize hierarchical relationships

between concepts by the time of the posttest, as a result of

the treatment. Lastly, for concept placement that is

blatantly wrong or omitted entirely, a score of zero is

0
5.11

given. The algorithm by which a numerical score is assigned

to a concept node is provided in Nassi-Shneiderman format in

Figure 5-4.

Relationship scoring is less stringent, since exact

wording of relationships between nodes is not as easily

reproduced as is exact placement of nodes. For

relationships which have been omitted or express a wrong or

illogical relationship (an admittedly subjective measure)

between two correctly placed concept nodes, zero points is

given. For any attempt at all at expressing a relationship,

even "e-g.," "is a," etc., one point is scored. For a more

For each node in diasram

Concept node position is

exactl missing inverted incorrect uhol1l
same as in inter- with but incorrect
master mediate respect logical or
concept node to missing
diagram parent
score is score is score is score is score is

25 20 15 5 a

Relationship wordins is
full verb or strong verb an valid wholls
preposition or attempt incorrect
phrase preposition or missing

score is score is score is score is

S _ 3 1 1

Figure 5-4. Concept Diagram Scoring Algorithm.

5.12

thoughtful, more correct, or more exact attempt, especially

one which includes a verb or a prepositional phrase, three

points are given. The maximum of five points is scored for

fully developed verb phrases in "correct" relationships or

for fully developed relationships between nodes judged

earlier to be logical, but not explicitly expressed in the

reading.

A summary of numerical results from the concept diagram

portion of the evaluation is included in the "Findings"

section.

5.3.3 Posttest Factual Recall Quiz

The third measure of the tutorial design scheme's

effectiveness was purely objective in nature and intent. It

was a ten-question quiz (see Figure 5-5), presented on the

same day as the posttest concept diagram portion of the

evaluation. Its purpose was to provide data to indicate

whether or not the relationship-based text structure

facilitated recall of specific information better than did

the strict linear presentation.

The results of this testing portion were not considered

critical to the overall evaluation, but were included simply

to gain some purely objective results. This is primarily

so, since recall of specific facts in the reading material

does not necessarily reflect a student's process of

structuring concepts in a hierarchy of abstraction. Indeed,

5.13

IN-CLASS ASSIGNMENT -- PART II

The following questions were taken from the reading you were
assigned in the laboratory last week. Answer the questions
based on the information presented in the reading.

1. Who headed the corporate team which developed Ada?

2. What caused the DoD to initiate the process which
produced Ada?

3. Non-DoD interest came from what public/international
sectors'

a) c)
b) d)

4. Succinctly, but specifically, what role did each of
these documents play in the
design/development/implementation of Ada?

TINMAN
STONEMAN
STEELMAN
PEBBLEMAN:

5. What publication(s) has Ada caused to be created? Under
whose auspices?

Publication(s):
Auspices

6. Name 3 things that are unique about the Ada design and
development process.

a)
b)
c)

7. Circle the languages which served as baselines for Ada.
TACPOL JOVIAL ALGOL
SNOBOL PL/I CMS-2
Pascal FORTRAN COBOL

8. In what areas did the DoD assert control on the
implementation of Ada?

a) c)
b) d)

9. What color was given Intermetrics' proposed Ada design?

10. What top-level issues make the Ada language distinct
from other programming languages?

a) c)
b) d)

Figure 5-5. Objective Portion of the Posttest

5.14

a student's use of some mnemonic device may similarly

account for his ability to recall details. Additionally,

there is evidence that a deficiency in the administration of

the experimental treatment introduced a negative bias in the

experimental group's ability to recall specific information

from the reading. Further discussion of this issue is

deferred until a more appropriate section.

As for the test format, there were 5-1/2 relationship-

oriented questions. The remaining 4-1/2 questions required

recall of specific details embedded in both readings.

5.3.4 Posttest Attitudinal Surveys

The final tools used to evaluate the tutorial design

methodology were purely subjective attitudinal surveys. One

survey took the form of a written questionnaire and the

other, a group interview session. The primary purpose of

the survey portion of the evaluation was to collect

subjective data concerning the use of the non-linear

presentation of information in the tutorial.

The written survey (Figure 5-6) was presented to the

experimental group at the end of the posttesting phase. The

group interview session took place approximately one week

later. The interview was conducted by the researcher in the

instructor's absence. It was in this forum that the

students were informed that they had taken part in an

experiment not of the instructor's making.

5.15

Attitudinal Survey

This questionnaire accomoanies the hypertext-based tutorial
you used in your programming laboratory. Please
thoughtfully but briefly provide answers to the questions
below: (use the back or extra paper if needed).

1. How was the computer-based presentation of information
better or worse than reading a journal article covering the
same information' Be specific, please.

2. What percentage of the hypertext nodes did you explore
as you read the information in the tutorial9

0-25% 26-50% 51-75% 76-99% 100%

3. With respect to the number of nodes, there were...
(cir!le one of a-c, plus d if needed)

a. too few/too sketchy in content/detail
b. about enough to present sufficient detail
c. too many/too much detail irrelevant to the topic

d. other comment (please elaborate)

4. When you used F4 to activate a link to additional text,
did the text which ensued contain the content and relevant
detail of information you expected/needed? Elaborate.

5. Briefly comment on the tutorial with respect to:

Readability:

Comprehensiveness:

Understandability:

6. What SINGLE change would you recommend for the tutorial
which would help you, the reader, understand the

relationships between and relative detail associated with
the concepts presented in the tutorial9

Figure 5-6. Attitudinal Survey for Experimental Group.

0
5.16

Information compiled from the questionnaires and

0interview will be used to propose recommendations for use in
future tutorials designed using the methodology presented in

this thesis (see Chapter 6). Transcripts of the written

surveys are provided in Appendix C, and a summary of both

the written and oral feedback is presented in the "Findings"

section of this chapter.

5.4 Findings

As mentioned earlier, the instructors' feedback on the

content equivalency questionnaire was incorporated into the

final version of the tutorial presented to the students in

the experimental group. Individual comments will not be

Oincluded here.
The tallied results of each of the three evaluation

methods which were linked to the experiment are presented in

Tables 5-1a and 5-1b. In general, the combination

subjective/objective and purely subjective evaluations

indicate that the tutorial's relationship-oriented approach

was well-received. Further, it had a measurably positive

effect on the experimental group readers' process of

mentally structuring the concepts presented in it.

Numerically speaking, however, the purely objective measure

did not indicate that the tutorial facilitated verbatim

retention of specific information, any more than did a

linear journal article.

5.17

Table 5-1a. Control Group Scores

Student Scores
Pretest Posttest Gain Quiz

subject 1 88 228 140 72
subject 2 34 170 136 30
subject 3 314 369 55 80
subject 5 250 270 20 132
subject 7 324 509 185 132
subject 8 255 344 89 100
subject 9 374 431 57 52
subject 10 82 240 158 76
subject 14 166 226 60 117
subject 20 170 386 216 50

Avg 205.7 317.3 111.6 84.1
Var 11992.8 10400.2 3759.0 1127.3
Std 109.5 102.0 61.3 33.6

Table 5-1b. Experimental Group Scores

0 Scores
Student Pretest Posttest Gain Quiz

subject 4 186 445 259 62
subject 6 310 454 144 89
subject 11 158 318 160 79
subject 12 224 373 149 49
subject 13 189 523 334 137
subject 15 252 325 73 65
subject 16 206 399 193 61
subject 17 * 341
subject 18 256 351 95 91
subject 19 71 238 167 79

Avg 219.3 380.7 174.9 79.1
Var 5343.0 6492.2 5710.1 590.8
Std 73.1 80.6 75.6 24.3

* Missed posttests (not figured in those statistics)

0
5.18

| i mI

5.4.1 Results of Concept Diagram Testing

The use of concept diagramming as the primary

evaluation tool offered a plausible way to determine if the

tutorial design methodology actually influenced the

structure students used in assimilating the concepts

discussed in reading material. Analysis of the average gain

scores for each group evidences that the experimental

treatment positively affected the concept structuring

technique of the experimental group members. Statistically,

with alpha = .05 the experimental group began to view the

concepts in the tutorial reading in a hierarchy of

abstraction, more so than did the control group.

5.4.2 Results of Objective Post-treatment Quiz

As referenced earlier, a weakness in the instructions

accompanying the administration of the experimental

treatment essentially voided any objective measure of the

treatment's effect on recall of facts and details. Some

comments expressed the post-treatment attitudinal surveys,

and reconfirmed in the group interview, reveal that the

experimental group students did not fully understand the

course-related, information transfer purpose of their

laboratory assignment. The students commented that they

understood their purpose was to evaluate the hypertext-based

method of presentation, and not to read for understanding

5.19

the content of the tutorial. This sentiment was

overwhelmingly expressed in the group interview session.

The effects of this misinterpretation are reflected in

the experimental group's individual and average scores on

the objective portion of the posttest. The control group's

average score surpassed the experimental group's by 5 points

(see Tables 5-1a,b). Statistically, a 5-point spread in the

average scores (out of 170 possible points) is only

significant with alpha <= .35, considering the variances of

the raw scores (see Tables 5-1a,b). However, the wording of

the answers themselves, and written remarks such as "don't

remember," in conjunction with the comments noted in the

attitudinal surveys, are indicators that the experimental

group, by and large, was not able to recall specific

information, based on the reading, with the same accuracy as

the control group. Also, it is noteworthy that even the

control group averaged just under 50 percent of the maximum

test score.

In the final analysis, we must consider both the raw

test scores and the evidence of a deficiency in the

administration of the experimental treatment. In light of

these factors, there is not sufficient evidence to show that

the scores of the objective test were positively influenced

by the experimental treatment.

5.20

5.4.3 Results of the Attitudinal Surveys

The students' written responses to the survey

questionnaires are presented in Appendix C. A general

summary of the comments is included here. On the positive

side, the students approved of the enhanced topic

organization and key topic highlighting which the

relationship-driven approach in the tutorial provided.

Also, the "select only the nodes you want" opportunity

provided by a hypertext structure was noted as beneficial.

On the negative side, some students were frustrated by the

distraction of the reverse video image of the hypertext

nodes. Additionally, some students would have preferred the

written medium over the video display terminal, so quick

* scanning of the entire document could be possible.

Overall, many of the negative comments were reflections

of the students' frustrations caused by the Knowledgepro

environment itself. The reverse video, color background,

absence of a browsing map, etc. are all restrictions of the

environment. Also, since several students commented that

the hypertext experience was "not the usual way of reading,"

there is more evidence that factors other than the

hierarchical approach to text structuring were the key

sources of user displeasure.

In the interview session, all ten of the experimental

group students admitted that they approved of the relation-

5.21

-'riven text structuring approach. Also, with more

familiarity with the hypertext way of reading, they would

have r ijoyed the expcrience more, and gained more benefit

from the tutorial. This can be attributed to the

researcher's failure to ensure that the reading content

alone was to be evaluated, and not the hypertext experience

itself. Overall, and of most significance to this thesis,

the attitudes concerning the portions of the tutorial which

can be directly linked to the decomposition methodology were

overwhelmingly positive.

0

0
5.22

06. Conclusions and Recommendations

This concluding chapter draws together the research

described in the previous chapters. It focuses on how the

research represents a well-rounded effort to improve the

learning effectiveness of a microcomputer-based computer-

assisted tutorial. Firstly, the chapter reviews and

summarizes the results of the individual research products.

Secondly, it enumerates the conclusions which may be drawn

from the research. Finally, it lists recommendations both

for improvements and for follow-on efforts to this research.

6.1 Summary

0The broadbased literature survey revealed that in both

military and civilian arenas, research in the last few

decades has contributed to improved computer-based

instructional products. Modern efforts have brought about

products which employ high-tech features such as artificial

intelligence, enhanced high-resolution graphics, and

interactive video discs. In addition there has been a

recent emphasis on hypertext- and hypermedia-based products

which facilitate linking of text, graphics, and audiovisual

resources.

Cognitive theory is concerned with the ability of an

instructional method to facilitate assimilation of the

6.1

concepts presented by that method. To that end, this

research was undertaken with learning theory, particularly

AusuLel's theory, as a guide. This thesis has proposed a

methodical approach to structuring the information content

of a hypertext-based CAI tutorial to enhance a reader's

assimilation of concepts. The methodology also incorporates

knowledge engineering, software engineering and hypertext.

The methodology was demonstrated by transforming the

contents of a professional journal article into a

hierarchically structured hypertext document. The resulting

tutorial product was evaluated by way of a single-case

experiment. Subjective measures of the experimental results

indicated that the tutorial had a positive effect on

enhancing its reader's assimilation process. Objective

measures were inconclusive.

6.2 Conclusions

Upon the completion and analysis of this multiphase

effort, several conclusions can be drawn.

1. A methodology has been developed which facilitates the

mapping from a printed source or expert knowledge base to

the textbase of a computer-assisted tutorial. The

methodology is solidly founded on the Object-Oriented Design

(OOD) paradigm, a proven problem decomposition and software

design methodology. In the same way OOD maps from a problem

0
6.2

description to a structured network of computer software

components, the methodology offered in this work facilitates

a decomposition of an expert knowledge base into a

structured network of text components. Particularly, this

network of passages represents a hierarchy of abstraction,

which learning theorists advocate as an effective

presentation of instructional material.

2. The methodology provides a means for designing formal,

relationship-driven structure intu a hypertext document. In

doing so, it emphasizes the establishment of nodes and

inter-text links, solely on the basis of relationships

between concepts in the text. Pre-establishing text links

in this manner provides three major benefits to the reader:0
a. Expressing node names as phrases which reveal a

relationship between the current topic and a related

topic explicitly draws attention to and reinforces the

relationship between the two topics;

b. With "up front" information about the text to which a

node is linked, the reader is offered additional

motivation for exploring the link, i.e. the reader

knows beforehand the general theme of the linked text,

and will not be surprised by seemingly unrelated

information; and

0
6.3

c. Since the nodes are hierarchically structured and

cannot be altered by the user, the potential for the

reader to get lost in a web of text links, as is

possible in unstructured hypertext, is removed.

3. The experimental group members retained the

hierarchical, relationship-based structure of the tutorial's

key concepts better than the members of the control group.

The significance is this: the students who used the

structured tutorial began to view the concepts in the

reading material as being related through a hierarchy of

abstraction. This result can be attributed to the

Ausubelian approach to structuring the information presented

in the tutorial.

4. Objective measures requiring the recall of specific

facts or details were inconclusive. This result is

attributed to a weakness in the instructions provided to the

members of the experimental group prior to undergoing the

treatment. Comments in the students' critiques of the

tutorial experience indicate that the students did not

understand that their role in using the tutorial was to

absorb and understand its information content. Instead, the

students concentrated on the novelty of the hypertext

presentation itself. Consequently, they were not successful

in retaining the tutorial's content, as measured by an

objective post-treatment test.

6.4

5. An important observation with implications for future

research was made as a result of implementing Object-with-

Relations (O-R)-type objects in hypertext. To enforce the

visibility constraints in software, the hypertext

environment must be sophisticated enough to provide the

nesting of one text node inside another. The KnowledgePro

environment used in this thesis provides this nesting

capability, but TextPro, a hypertext-generating sister

product to KnowledgePro, does not. The Relationships-to-

Object (R-O) encapsulation model can at least be simulated

using TextPro, though again, there is no means within the

software to enforce visibility restrictions.

6. A few other conclusions can be drawn concerning the

KnowledgePro expert system shell. During the administration

of the control and experimental treatments, both of which

made use of KnowledgePro capabilities, key limitations of

the environment were pointed out by the students:

a. The system-supplied instructions for operating within

the shell are not complete enough for first-time

computer users. When the initial screen is displayed

indicating the available compiled textbases, there are

no on-screen instructions for how to begin exploring a

base. Instead, the function-key menu at the bottom of

the screen indicates the existence of a HELP function,

which explains how to select a textbase and begin.

6.5

There is, however, no direct on-screen reference to the

* help facility.

b. The system is not robust; hitting a single incorrect

key can cause a user to involuntarily terminate a

session. The "legal" keys which can be used to browse

an open textbase are the familiar <PgUp> and <PgDn>

screen scrolling keys, and the less familiar F3, F4,

and <space>. The <return> key, (often used as a reflex

instead of F4 by new users attempting to activate a

node), closes the file and returns the user to the

initial display menu. According to post-treatment

interviews with the students, this was a source of

frustration. For that reason, it may have been a key

cause for many students' lack of attention to the

tutorial's information content. Additionally, the

capability to scroll the screen one line at a time

using the arrow keys was not provided by the

environment. It should be noted in all fairness that

the KnowledgePro product is not designed primarily as a

hypertext product. It is an expert system shell, a

subset of whose features facilitates the use of

hypertext nodes and links.

7. Lastly, review of the evaluation process revealed a

possible source of bias which could not be filtered from the

experimental portion of the research. Admittedly, portions

6.6

of the tutorial's subject matter were already familiar to

(albeit possibly misunderstood by) the students who took

part in the experiment. The potential source of bias was

revealed during the group interview session which followed

all testing. Several students noted that what they read in

the tutorial did not always agree with some information they

had previously read or heard in classroom lectures. The

result appears to have been both frustration with and in

some cases hostility toward the tutorial. For this reason,

the students lost some confidence in the tutorial's value as

a learning tool. This factor, in addition to the previously

addressed weakness in instructions, is seen as a negative

bias, possibly manifest in the scores of the objective

portion of the posttest.

6.3 Recommendations

As a result of the conclusions stated above and

experience in conducting this research, the following

recommendations are offered to those who would follow up on

the work presented here.

1. In a future evaluation of the methodology described in

Chapter 3, an attempt should be made to decompose a

knowledge base directly from an expert, instead of from a

printed article. The process may involve a preliminary

knowledge acquisition phase which employs concept mapping or

other techniques proposed by Novak and Gowin (1986).

6.7

Indeed, similar knowledge extraction techniques could be

employed at the initial phase of the OOD process, which

relies on an "a priori" understanding of the requirements

and eventual components of the system being developed.

2. In the same exploratory sense as the previous

recommendation, the decomposition methodology should be

employed on a much larger knowledge base. However, based

both on feedback from the students who used the tutorial and

on the results of other research (e.g. Beeman, et al., 1987;

Conklin, 1987a; Landow, 1987; Oren, 1987), a document that

is too large and complex is a greater source of frustration

to the reader than it is a viable medium of knowledge

transfer.

0 3. In an attempt to remove the potential bias associated

with presenting concepts already familiar to the subjects,

the same experiment should be conducted using a tutorial

which addresses concepts not familiar to the participants.

Doing so may permit the researcher to gain deeper insight

into the true measurable effects of the proposed approach to

the presentation of instructional material.

4. The experiment should be replicated using a group who is

both familiar with the concept of hypertext and adept at

using the KnowledgePro environment as a browsing tool. In

this way, the subjects' energy and time may be spent

concentrating on the information content of the tutorial,

6.8

instead of on the particulars of the software environment in

which the tutorial is hosted.

5. In view of the limitations or weaknesses of the

KnowledgePro shell as used as a hypertext generator, both

the research and the students may be better served by the

use of a more sophisticated, more robust hypertext

environment.

6.4 Remarks

This thesis has been an effort to promote and enforce

the structure of hypertext documents as a means of

facilitating the meaningful transfer of information from

instructor to student. In so doing, this research has

* endeavored to further the cause of hypertext as a useful

contribution to the field of computer-aided instruction.

6.9

0Appendix A: Encapsulated Objects from Example Knowledge
Base Decomposition

This appendix of figures presents the encapsulated

objects which resluted from Step 7 of the decomposition

presented in Chapter 4. There are two basic O-R object

depictions used in this appendix. Figure A-la depicts an

object which encapsulates other objects. Figure A-lb

represents an object which contains text only.

0
A.l

Object Title

u Concept- ,Clati.nsh p Object has with Concept

(ab ject) I __

Relationship Object has uith Concept

anship Object has with Concept >

lationhip Object has with Concept

Figure A-la. O-R Object Encapsulating Other Objects

Object Title

A

Figure A-lb. O-R Object Encapsulating Text Only

A.2

Rda is Different

Support for Softuare
Enginvering Principles

Ofers High-Level Feat.urr

Hitracted Strong Int e r e s t

Proc.sses which Produced Rda

Figure A-2. Main Encapsulated Object

A.3

Support f or Sof tuare

Ensinaerins Principles

Figure A-3a. FirSt-Level object (1)

A. 4

Of fers Hish-Leuel

Features

Figure A-3b. First-Level Object (2)

A.5

Attracted Strans

Interest

Utilized in Commercial Sector

Utilized in Industrial Sector

Accepted in Europe

Sparked Publications and Conferences

Figure A-3c. First-Level Object (3)

A.6

Processes which

Produced Ada

Encouraged Public Feedback

Contracted to Competitive Bidders

Developed by a Corporate Team

Established Rdminstratiue Controls>

Figure A-3d. First-Level object (4)

A. 7

Utilized in
Commercial Sector

Figure A-4a. Second-Level object(1

A.8

Utilized in

Industrial Sector

Figure A-4b. Second-Level Object (2)

A.9

Acceptud in Europe

Figure A-4C. Second-Level Object (3)

A. 10

Sparked Publications
and Conf erences

Figure A-4d. Second-Level object (4)

A. 11

Encourased Public Feedback

Figure A-4e. Second-Level Object (S)

A. 12

Contracted to

Competitiue Bidders

Figure A-4f. Second-Level object (6)

A. 13

Deuelu'ed by

Cor-porate Team

Figure A-4q. Second-Level Object (7)

A. 14

Established

Rdministratiua Controls

Forbade Supersets and Subsets

Secured an Rda Trademark

Set Requirements for Compilers

SPlanned for a Programming

Figure A-4h. Second-Level Object (8)

A. 15

Besan with a Formal

Requirements Statement

Evaluating Existing Langu

Figure A-4i. Second-Level Object (9)

A.16

Resulted from a

Sof tware Crisis

Caused bj a Proliferation o an uaveiml

Figure A-4j. second-Level Object (10)

A. 17

Forbade Supersets

and Subsets

00

Figure A-5a. Third-Level Object (1)

A.18

Secured an
Ada Trademark

0L

Figure A-Sb. Third-Level Object (2)

A. 7

5et Requirements
f or Compilers

Figure A-Sc. Third-level object (3)

A. 20

Planned f or a Provrammn..

Support Ermuranment

Seed Out in STONENAN

Providing an Intezrated ToIIIZt

Figure A-Sd. Third-Level object (4)

A. 21

Eusluatines
Exioting Lansuases

Figure A-5e. Third-Level Object (5)

A. 22

Caused by
Prolifeoration of Lansuases

Figure A-Sf. Third-Level Object (6)

A.23

Spelled Out in
STONEMkAN Document

Figure A-6a. Fourth-Level object (1)

A. 24

Prauidins an

Inteisrated Toolset

Figure A-6b. Fourth-Level object (2)

A.25

0
Appendix B. Complete Hypertext-Based Tutorial

This is the hypertext-based tutorial created from the

decomposition begun in Chapter 4. The remainder of the text

in this appendix appears in the format of KnowledgePro

commands and constructs (Knowledge Garden, 1988). The start

and end of each text object is indicated at the left margin.

Lower level objects are indicated by two or more asterisks,

with more asterisks indicating a more deeply nested object.

0
B. 1

(* The tutorial begins with a simple practice session, to *)
(* familiarize the user with the KnowledgePro hypertext *)
(* functions.

ask (' Welcome to the MATH 555 tutorial!

Select INSTRUCTIONS for instructions
or

Select QUIT to exit

,action,[INSTRUCTIONS,QUIT]).

if ?action is not QUIT then
do (?action).

topic 'INSTRUCTIONS'.
window ('HOW TO USE THIS TUTORIAL',,,,1,1,78,20).
say ('

This is a HYPERTEXT based computer-assisted
tutorial.

Words appearing in a #mdifferent colors#m or
#munderlined#m are hypertext nodes. Activating nodes
makes a window pop up, just like the one you''reO reading.

* Use the F3 key to move from node to node.
* Use the F4 key to activate a node.
* Use the <Space> bar to return from a new node.
* Use <PgUp> and <PgDn> to scroll in a window.

(look for "page 1 of ?" in lower menu)

********* TRY IT YOURSELF *********

Use F3 to select the "different color " node.
(a selected node appears in yellow on black)

Then use F4 to activate it. If you''re successful,
you get a message saying so.

use <PgDn> to see more

Now use F3 to select the "underlined" node.
Use F4 to activate it and if you get a message,
you''re ready to go.

use <PgUp> to see original screen

B.2

topic 'different color'.
window ('Example hypertext node action',,,,5,5,73,15).
say ('

YOU DID IT!
Color only works on a color monitor.

Use <space> to return

close window ()
end. (* different color *)

tonic 'underlined'.
window ('Another practice hypertext node

action', ,,, 5,5,73,15).
say ('

YOU DID IT!

Nodes appear underlined on a monochrome monitor

Use <space> to return

close-window (.

end. (* underlined *)

closewindow ().

window ('Are You Ready to Begin?'... 5,3,71,12).
ask * Select ADA to begin the lesson

or
* Select INSTRUCTIONS to return to instructions

or
* Select QUIT to exit'

,desire,[ADA,INSTRUCTIONS,QUIT]).

if ?desire isnot QUIT then
do (?desire).

close window (.
end. INSTRUCTIONS *)

(* The next section begins the actual tutorial textbase *

B. 3

(* BEGIN ADA IS DIFFERENT *)

0 topic 'ADA'.
window ('ADA IS DIFFERENT FROM OTHER LANGUAGES'

,,,,1,1,78,20).
say ('

Ada can be distinguished from the majority of
other computer languages on many technical and
nontechnical merits. On non-technical grounds, the
ordered design and development #mprocesses which
produced Ada#m are unlike those of any other
programming language. Additionally, unlike other
languages, Ada has #mattracted strong interest#m from
users and enthusiasts in the international computing
community, outside the Department of Defense (DoD).
With regard to key unique attributes of its technical
elements, Ada #moffers high-level programming
features#m which contribute to Ada''s #msupport for
software engineering principles#m.

(** BEGIN: PROCESSES WHICH PRODUCED ADA*)

topic 'processes which produced Ada'.
window ('Unique Design and Development

Process',,,,3,3,76,19).
say ('
The Ada design and development process basically
#mresulted from a software crisis#m in the DoD.
Uniquely, the process #mbegan with a formal
requirements statement#m, for a language to meet the
DoD''s embedded system software needs. Also unique was
the fact that the initial language design was
#mcontracted to competitive bidders#m, some from
outside the U.S. and #mdeveloped by a corporate
team#m, as opposed to the typical committee or
individual effort.

The DoD also #mestablished administrative controls#m
to govern implementation of the language product, both
its syntax and its compilers. And to a degree that had
not been experienced before, through all of these
processes, the DoD #mencouraged public feedback#m,
actually implementing valid recommendations when
possible.

).

B.4

(*** BEGIN: RESULTED FROM A SOFTWARE CRISIS *)

topic 'resulted from a software crisis'.
window ('Initiated Because of DoD Software

Crisis',,, ,4 ,4,74,18).
say ('

The impetus for the creation of Ada was a software
crisis within the DoD. The crisis was recognized in
1974 when a DoD report was issued, estimating a
software development and maintenance cost of over three
billion dollars. The crisis was #mcaused by a
proliferation of languages#m within the department,
which severely restricted reusability of both software
and programmers.

(**** BEGIN: CAUSED BY A PROLIFERATION OF LANGUAGES *)

topic 'caused by a proliferation of languages'.
window ('Caused by Too Many Programming

Languages',, ,,5,5,72,17).
say ('

The DoD recognized a proliferation of programming
languages as a cause of its software crisis. The DoD
estimated there were literally hundreds of programming
languages and dialects in use on DoD projects. Each
new language required its own contracted maintenance
teams, which accounted for the astronomical cost.

close window ().

end. (* caused by a proliferation of languages*)

(**** END : CAUSED BY A PROLIFERATION OF LANGUAGES *)

close window ().
end. (* resulted from a software crisis *)

(*** END: RESULTED FROM A SOFTWARE CRISIS *)

(*** BEGIN: BEGAN WITH A FORMAL REQUIREMENTS STATEMENT*)

topic 'began with a formal requirements statement'.
window ('began with formal requirements

statement',,, ,4,4,74,18).
say ('

The design for Ada was based on language requirement
specifications originally established in the DoD''s
STRAWMAN document. The intent of the 1975 document was
to detail specifications for a language to be used in
DoD embedded computer systems. After some revision,
the document was re-released as WOODENMAN in early
1976. Later that year, the newer TINMAN revision was

B.5

released. TINMAN was used as a basis for #mevaluating
existing languages#m for suitability as the new
standard DoD language. TINMAN later underwent revision
to become the 1978 IRONMAN document. The IRONMAN
requirements were used at the time the design and
development process formally began, but a still later
revision, STEELMAN, was the final version which
governed the language development.

,).

(**** BEGIN: EVALUATING EXISTING LANGUAGES *)

topic 'evaluating existing languages'.
window ('Evaluated Existing Languages Against

Requirements',,, ,5,5,72,17).
say ('

The TINMAN document was used as a basis for evaluating
existing languages for suitability as the DoD''s single
language for use in DoD software systems. Eventually,
ALGOL68, Pascal, and PL/I were selected as baseline
languages, from which the new language need not be (and
is not) compatible. Those languages considered were:

DoD/Embedded Computers
CMS-2, CS-4, HAL/S, JOVIAL 3B, JOVIAL J73, SPL/1,TACPOL

Process control and/or Embedded Computers (Europe)
CORAL66, LIS, LTR, PEARL, PDL2, RTL/2

Research-Oriented Languages
ECL, EL-i, EUCLID, MORAL

Widely Used and/or General Languages
ALGOL60, ALGOL68, COBOL, FORTRAN, Pascal, PL/I, SIMULA67

close window (.

end. (* evaluating existing languages *)

(**** END: EVALUATING EXISTING LANGUAGES *)

close window ().
end. (*began with a formal requirements statement*)

(*** END: BEGAN WITH A FORMAL REQUIREMENTS STATEMENT *)

B.6

(*** BEGIN: CONTRACTED TO COMPETITIVE BIDDERS *)

topic 'contracted to competitive bidders'.
window ('Contracted to Bidders',,,,4,4,74,18).
say ('

Unique to Ada, the language design contracts were
offered to competing contractors who were to come up
with independent language designs. Of over 15 original
bidders, only four were selected to continue.

In an effort to keep the design evaluations as unbiased
as possible, each design was referred to only by a
color (red, green, blue, or yellow). After the four
preliminary designs were reviewed by both military and
civilian agencies, the Red team (Intermetrics) and
Green team (Honeywell Bull) were selected to continue
designing. In the end, the French based Honeywell Bull
team won the development contract.

close window (.

end. (* contracted to competitive bidders *)

(*** END: CONTRACTED TO COMPETITIVE BIDDERS *)

(*** START: DEVELOPED BY A CORPORATE TEAM *)

topic 'developed by a corporate team'.
window ('Developed by Corporate Team'

,,,,4,4,74,18).
say ('

In contrast to the "normal" development by an
individual or committee, Ada was developed by an entire
team of programmers from the french based Honeywell
Bull corporation. Design decisions were made or
approved by the team leader, Frenchman Jean Ichbiah.

closewindow (.

end. (* developed by a corporate team *)

(*** END: DEVELOPED BY A CORPORATE TEAM *)

(*** BEGIN: ESTABLISHED ADMINISTRATIVE CONTROLS *)

topic 'established administrative controls'.
window ('administratively controlled Ada'

, ,4,4,74,18).
say ('

The DoD placed administrative controls on the language
to prevent the same types of language non-portability
problems it currently faced. Additionally, the DoD
intended to save Ada from the fate of languages like
FORTRAN and JOVIAL, which have numerous versions and

B.7

dialects. To control growth of and changes to the
language syntax, the DoD early in the process #msecured
an Ada trademark#m and #mforbade subsets or supersets#m
of the language.

On a larger scale, and to provide for controls on
language implementation, the DoD #mset requirements for
compilers#m including their development and validation.
Lastly, the DoD #mplanned for a programming support
environment#m, nearly from the outset. It is the
consideration of these issues so early in the design
and development processes which contributes to Ada''s
distinction from other languages.

(**** BEGIN: SECURED AN ADA TRADEMARK *)

topic 'secured an Ada trademark'.
window ('secured Ada trademark',,,,5,5,72,17).
say ('

Ada was granted a trademark in 1981 to prevent the
validation of compilers which do not conform to the
standard Ada language. TRAC and SIMSCRIPT are perhaps
the only other trademarked languages.

close window ().
end. (* secured an Ada trademark *)

(**** END: SECURED AN ADA TRADEMARK *)

(**** BEGIN: FORBADE SUBSETS OR SUPERSETS *)

topic 'forbade subsets or supersets'.
window ('forbade subsets or supersets'

,,,,5,5,72,17).
say ('

The DoD insisted from early on in the development
process that no subsets or supersets of Ada would be
allowed. This requirement would greatly enhance the
chances of Ada''s portability. However, some
exceptions had to be made for the earliest prototypes
of Ada and its compilers. But now, no subset or
superset of Ada can be recognized as true Ada, and no
compiler which allows a subset or superset can be a
validated Ada compiler. The only other language to
forbid these dialects was MIT''s COMIT, which was
eventually superseded by SNOBOL.

close window (.
end. (* forbade subsets or supersets *)

(**** END: FORBADE SUBSETS OR SUPERSETS *)

B.8

(**** BEGIN: SET REQUIREMENTS FOR COMPILERS *)

topic 'set requirements for compilers'.
window ('established requirements for Ada

compilers',,,,5,5,72,17).
say ('

The DoD handled the validation of Ada compilers in a
manner different from any other language.
Specifically, the DoD planned the validation process as
an integral part of the entire language design and
development process. The DoD expressly requires Ada
compilers used on DoD projects to be validated, which
means they compile only true Ada as expressed in the
STEELI4AN document. Compilers not used on military
projects are not required to be validated, but most
companies procure validated compilers to ensure as much
portability with other compilers as possible.

close window (.
end. (* set requirements for compilers *)

(**** END: SET REQUIREMENTS FOR COMPILERS *)

(**** BEGIN: PLANNED FOR A PROGRAMMING SUPPORT ENVIRONMENT*)

topic 'planned for a programming support
environment'.

window ('planned support environment'
,,,5,5,72,17).

say ('
The DoD established requirements for a formal Ada
programming Support Environment (APSE). APSE
requirements are #mspelled out in STONEMAN#m, the last
in a series of revisions of environment requirements
documents. An APSE aids in Ada portability and promote
more effective use of the complex language by
#mproviding an integrated toolset#m for the Ada
programmer.

(***** BEGIN: SPELLED OUT IN STONEMAN *)

topic 'spelled out in STONEMAN'.
window ('enumerated in STONEMAN document'

,,,,6,6,70,16).
say ('

The STONEMAN document is so far the DoD''s last word on
requirements for an integrated Ada proc;zamming support
environment (APSE). STONEMAN describes a three-part
APSE, consisting of progressively higher-level0

B.9

! ! ! m

sections, the KAPSE, MAPSE, and APSE, respectively.
* Briefly,

KAPSE: Kernel APSE
Unique to specific host operating system

MAPSE: Minimal APSE
Minimal set of support tools
Built on top of KAPSE

APSE: User interface to MAPSE toolset
Additional user tools

close window().

end. (* spelled out in STONEMAN *)

(***** END: SPELLED OUT IN STONEMAN *)

(***** BEGIN: PROVIDING AN INTEGRATED TOOLSET *)

topic 'providing an integrated toolset'.
window ('provide integrated toolset'

,,,,6,6,70,16).
say ('

The APSE provides an integrated toolset to aid a
programmer in taking full advantage of the complex Ada
language. In addition to the compiler, the basic tools
include:

editor configuration manager
linker JCL interpreter
loader debugger

The Common APSE Interface Set (CAIS) is a set of Ada
packages which provide for interfaces between these
tools.

closewindow (.

end. (* providing an integrated toolset *)

(***** END: PROVIDING AN INTEGRATED TOOLSET *)

closewindow ().
end. (* planned for a programming support

environment *)

(**** ENL: PLANNLD FOR A PROGRAMMING SUPPORT ENVIRONMENT *)

cluse window ().
end. (* established administrative controls *)

(*** END: ESTABLISHED ADMINISTRATIVE CONTROLS *)

B.10

(*** BEGIN: ENCOURAGED PUBLIC FEEDBACK *)

topic 'encouraged public feedback'.
window ('Solicited Public Review and Comment'

,,,4,4,74,18).
say ('

A distinguishing element of the Ada design and
development processes was that throughout, the DoD
solicited and considered review and comment from the
international programming community. Public comments
were used in the series of revisions from STRAWMAN to
STEELMAN and in the evaluation of candidate language
designs. Also, the prototypical Preliminary Ada was
published in ACM SIGPLAN for commentary and review.

close window ().

end. (* encouraged public feedback *)

(*** END: ENCOURAGED PUBLIC FEEDBACK *)

close window ().
end. (* processes which produced Ada *)

(** END: PROCESSES WHICH PRODUCED ADA *)

(** BEGIN: ATTRACTED STRONG INTEREST *)

topic 'attracted strong interest'.

window ('Attracted Strong Interest Outside DoD'
,,,,3,3,76,19),

say ('
Unlike other DoD sponsored programming languages, (e.g.
JOVIAL, CMS-2, and TACPOL), sponsored languages, Ada
has attracted strong interest from the international
programming community. Ada has been #mutilized in
commercial#m and #mindustrial#m sectors in the U.S. and
in #mEurope#m, in military and research applications.
Additionally, Ada is the only language which has
#msparked publications and conferences#m which are
dedicated solely to the advancement of the language.

(*** BEGIN: UTILIZED IN COMMERCIAL *)

topic 'utilized in commercial'.
window ('Accepted in Commercial Setting'

,,,,4,4,74,18).

B.11

say ('
Ada''s wide acceptance has made it of interest to the
international commercial sector. Ada compilers, tools,
and software packages are slowly becoming commercial
items, available through commercial software vendors.
Additionally, there are several companies whose sole
business is developing Ada compilers and tools.

').

closewindow ().
end. (* commercial *)

(*** END: UTILIZED IN COMMERCIAL *)

(*** BEGIN: UTILIZED IN INDUSTRIAL *)

topic 'industrial'.
window ('Accepted in Industrial Sector'

,,,,4,4,74,18).
say ('

Ada is being used in industrial applications which are
not related to military projects. For example, a non-
military related trucking company has used Ada for its
data processing needs. Ada''s readability coupled with
facilities for numerical and data processing have
gained Ada a foothold in industry, in both embedded and
non- embedded software systems applications.

close window (.
end. (* industrial *)

(*** END: UTILIZED IN INDUSTRIAL *)

(*** BEGIN: ACCEPTED IN EUROPE *)

topic 'Europe'.
window ('Accepted in European Community'

, , 4,4,74,18).
say ('

Ada''s applicability to embedded software systems
accounts for its growing popularity in foreign
militaries. European Economic Community (EEC) and NATO
countries are beginning to use Ada in embedded weapons
systems and for research.

').

close window (.
end. (* military *)

(*** END: ACCEPTED IN EUROPE *)

B.12

(*** BEGIN: SPARKED PUBLICATIONS AND CONFERENCES *)

topic 'sparked publications and conferences'.
window ('Cause for International Publications and

Conferences', ,,,4,4,74,18).
say ('

Ada is the subject of several publications and special
interest groups. ACM SIGAda is dedicated to to Ada
applications and research. In addition, Ada has to its
credit international conferences and quarterly special
interest group meetings. No other language has
received this intense international attention.

close window ()

end. (* sparked publications and conferences *)

(*** END: SPARKED PUBLICATIONS AND CONFERENCES *)

closewindow ().
end. (* attracted strong interest *)

(** END: ATTRACTED STRONG INTEREST *)

(** BEGIN: OFFERS HIGH-LEVEL FEATURES *)

topic 'offers high-level programming features'.
window ('Offers High-Level Programming Features'

0 ,,,3,3,76,19).say ('
From a technical perspective, Ada offers many specific
high- level programming features provided by no other
single language. Ada combines some of the features of
Pascal, ALGOL, and PL/I, with some of its own unique
features. The most important of Ada''s features is the
facility of packaging. Ada also offers:

strong data typing real-time processing
generics exceptions
tasking overloading
numeric processing separate compilation

representation clauses

closewindow (.
end. (* offers specific high-level features *)

(** END: OFFERS HIGH-LEVEL FEATURES *)

B.13

(** BEGIN: SUPPORT FOR SOFTWARE ENGINEERING PRINCIPLES *)

topic 'support for software engineering principles'.
window ('Supports Software Engineering Principles'

3, 3,3176,19).
say ('

In many ways, Ada directly supports the principles of
software engineering. Ada is designed around the
software component, as reflected in the modular
properties of separately compilable packages and
subprograms. Ada supports abstraction and information
hiding by providing strong data typing and private
types. These constructs govern visibility or access to
code. Ada generics and stubbed package specifications
lend support to reusability and modularity concerns.
Overall, Ada supports many software engineering
desirables including:

structured programming reusability
top-down development modularity
strong data typing portability
abstraction readability
information hiding verifiability
encapsulation
separately compilable specification and body

close window (.0 end. (* support for software engineering principles *)

(** END: SUPPORT FOR SOFTWARE ENGINEERING PRINCIPLES *)

close window ().
end. (* Ada is different *)

(* END: ADA IS DIFFERENT *)

0
B. 14

Appendix C: Student Comments from Experimental Group
Attitudinal Surveys

This appendix presents the comments provided on the

attitudinal surveys referenced in Chapter 5. The original

surveys were not satisfactorily reproducible by photocopy,

so the students' verbatim comments and responses to each

question are transcribed here.

0

C. 1

QUESTION # 1. How was the computer-based presentation of
information better or worse than reading a journal article
covering the same information? Be specific, please.

RESPONSES:

Better than reading a journal, BUT in a journal the
reader does not need to be disciplined as much. 1) a
journal follows a logical sequence without the need to
skip around. Using hypertext is not natural since it
is not the way we are trained to read (i.e. beginning
to end). I think it would be more effective but it
would take some definite practice to reach a level of
competence using that method.

I would rather have had the journal, since then it
would be easier to scan the information. At times,
during the lab, I would be in a leg of the hypertext
facility and want to quickly review something in
another leg therefore I had to back all the way out and
back down the correct leg. Cumbersome!

If you visit nodes in wrong order, text seems
disjointed, and there are no clues to the proper order.

Much better in conveying organization of material.

O Better -- special attention is brought to key points.

At this point, being a new form of information
processing, it just takes time to get used to. I'm
used to reading in continuous paragraphs without
jumping back and forth, so it's worse than a normal
journal article.

It was better, but it was confusing at first to use F3,
F4 keys to change topics.

It is better in that it allows you to read only what
interests you. If you don't want to link to another
node, you don't have to. I do not like reading on
computers for more than 10 or 15 minutes. If it takes
any longer I would rather have a piece of paper in
front of me.

It did provide an outline using windows, though one
could lose frame of reference or "big picture."

C.2

QUESTION # 2. What percentage of the hypertext nodes did
you explore as you read the information in the tutorial?
(Number of responses indicated in parentheses below)

0-25% 26-50% 51-75% 76-99% 100%

(0) (0) (1) (4) (4)

RESPONSE from single student who marked "51-75%":

I think. It was hard to remember what nodes I had
already looked at.

QUESTION # 3. With respect to the number of nodes, there
were... (circle one of a-c, plus d if needed)

a. too few/too sketchy in content/detail
b. about enough to present sufficient detail
c. too many/too much detail irrelevant to the topic
d. other comment (please elaborate)

Number of responses for each choice were:

a. 1 b. 7 c. 1 d. 1*

* One student circled both "a" and "d" with the
comment:

Some seemed incomplete.

0

C. 3

QUESTION # 4. When you used F4 to activate a link to
additional text, did the text which ensued contain the
content and relevant detail of information you
expected/needed? Elaborate.

RESPONSES:

Yes, but it caused you to lose your previous train of
thought so if there were several levels of information
when you returned, you needed to reread the information
to return your train of thought at each level.

Usually

Yes, although sometimes I was surprised to get more
information than I expected.

Levels of "detail" was consistent across all nodes:
good.

The content appeared to coincide with the "topic
heading." Regarding relevant detail it would seem that
if a topic is new to you then you wouldn't know what
level of detail existed, or what if any of it was
relevant.

Yes, but as you used F3 on that screen then F4 then F3
on next screen it started to get confusing.

Usually too much. I think nodes off the main path
should be very brief.

Yes, but using F4 broke up the frame of thought from
sentence you were reading.

0
C.4

QUESTION # 5. Briefly comment on the tutorial with respect

* to:

Readability:

Comprehensiveness:

Understandability:

RESPONSES:

Readability:

Easy to read, but lose train of level as you go back up
the levels.

Reverse video nodes make the text very unreadable.
After 15 minutes I had had enough.

OK, but assumed knowledge of Ada "jargon" in some
cases.

Very easy/good.

Technical note: The highlighted fields could have been
displayed with different colors. The black boxesO interrupted the flow of my reading.

Flowed very well -- easy to read.

OK

Very good.

It was easy to read.

C.5

Comprehensiveness:

Could have retained more with a little more practice
with the new method.

Too many legs/nodes. Seeing the nodes at each level
made me feel I had to look at them.

Some seemed incomplete.

Good.

Easy to learn. Very efficient with 2 keystrokes.

Too many screens.

Very good. A good article.

I understood it since we are in the last couple weeks
of [MATH] 555. Might need more comprehensiveness if it
was the beginning of the quarter.

Understandability:

No problem once my train of thought was re-established.

* Below average.

Very good. Written well.

Without the tutorial it might have been hard to
understand what the program did.

Flowed very well, easy to read.

OK.

Very good. The article was good, but the traversing of
nodes tended to detract from the main article.

I understood it since we are in the last couple weeks
of [MATH] 555. Might need more comprehensiveness if it
was the beginning of the quarter.

C.6

QUESTION # 6. What SINGLE change would you recommend for
the tutorial which would help you, the reader, understand
the relationships between and relative detail associated
with the concepts presented in the tutorial?

RESPONSES:

One thing that would help is a distinguishing mark that
allows the reader the ability to mark previously read
text. A couple of times, I found myself rereading text
because as I moved up the levels I couldn't remember
what I had read and what I hadn't.

If there was some way to remove the reverse video, and
subsequently use any mouse click on the 1st sentence to
send the reader to a more detailed section; any mouse
click on the 2nd sentence (or particular phrases of the
second sentence); 3rd, 4th.... This way the reader
could thoroughly digest the 1st page and subsequently
return to the beginning to select words, ideas,
sentences which he wanted more information on, not
simply what the developer felt the user needed.

Flesh out some areas more, otherwise OK.

None comes to mind. Since the tutorial was presented
as "evaluate this" rather than "learn the material in
the tutorial," some of the detailed questions were
difficult.

A drawing encompassing all the highlighted fields would
give the reader an overall view of what the tutorial
was trying to present. NOTE: It is likely that you
noticed that I failed to read and maintain the
information presented. When asked to evaluate a piece
of software, I did not make an effort to retain what
was presented. I only focused on the How! Sorry.

I would not allow more than 2 or 3 levels in depth.

A glossary of terms for the person being introduced to
Ada.

C.7

Bibliographv

Barney, Cliff. "Hypertext pioneer van Dam recalls two
decades of research, progress," MacIntosh Today, 1: 26
(November 23, 1987a).

--- "Hypertext plays to packed house," MacIntosh
Today. 1: 1+ (November 23, 1987b).

Beck, J. Robert, and Donald Z. Spicer. "Hypermedia in
Academia," Academic Computing, 2: 22+ (1988).

Beeman, W. 0., Kenneth T. Anderson, Gail Bader, James
Larkin, Anne P. McClard, Patrick McQuillan, and Mark
Shields. "Hypertext and Pluralism: From Lineal to Non-
Lineal Thinking," Hypertext '87 Papers. 67-88. Chapel
Hill, NC: Hypertext Planning Committee, November 1987.

Booch, Grady. Software Engineering with Ada. Menlo Park,
CA: Benjamin-Cummings, 1983.

--- Software Engineering with Ada (Second Edition).
Menlo Park, CA: Benjamin-Cummings, 1987.

Boulet, Marie-Michele. "Educational Software Design Using a
Diagnostic Approach," Computers and Education, 11: 219-
228 (1987).

Bralick, Capt. William A. An Examination of the Theoretical
Foundations of the Object-Oriented Paradigm. MS
thesis, AFIT/GCS/MA/88M-01. School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson
AFB OH, March 1988.

Burns, Hugh, Commander, Intelligent Systems Branch.
Telephone interview. USAF Human Resources Laboratory,
Brooks AFB TX, 20 April 1988.

Campbell, D. T. and J. C. Stanley. Experimental and Quasi-
Experimental Designs for Research. Chicago: Rand
Mcnally, 1963.

Charniak, Eugene and Drew McDermott. Introduction to
Artificial Intelligence. Reading, MA: Addison-Wesley
Publishing Company, 1984.

Charney, Davida. "Comprehending Non-Linear Text: The Role
of Discourse Cues and Reading Strategies,"
Hypertertext '87 Papers. 109-120. Chapel Hill, NC:
Hypertext Planning Committee, November 1987.

BIB. 1

Collier, H. W., Carl B. McGowan, and William T. Ryan.
"Microcomputers: a Successful Approach to Teaching
Business courses," Computers and Education, 11: 143-
148 (1987).

Conklin, Jeff. A Survey of Hypertext. MCC TR No. STP-356-
86, Rev. 2. Austin: Microelectronics and Computer
Technology Corporation, 3 December 1987a.

------. "Hypertext: An Introduction and Survey," IEEE
Computer. 20: 17-41 (September 1987b).

CRC. Standard Mathematical Tables (Twenty-first edition).
Cleveland: The Chemical Rubber Co. Press, 1973.

Dickinson, LtCol Michael T. "Whither CAI? Instructional
Design Aspects of Computer Assisted Instruction," 1985
Air Force Conference on Technology in Training and
Education (TITE) Proceedings. III-1 - 111-5. Colorado
Springs: (publisher unavailable) 1985.

Enger, Maj Rolf C., Maj R. E. Swanson, Maj L. W. Schrock,
and Capt M. V. Tollefson. "Innovations in Physics
Teaching at the USAF Academy Curriculum Changes to
Incorporate Computer Aided Instruction," 1985 Air
Force Conference on Technology in Training and
Education (TITE) Proceedings. 1-33 - 1-52. Colorado
Springs: (publisher unavailable) 1985.

EVB. An Object Oriented Design Handbook. Rockville, MD:
EVB Software Engineering, Inc., 1985.

Gardner, J. R., A. McEwen, and C. A. Curry. "A Sample
Survey of Attitudes to Computer Studies," Computers and
Education. 10: 293-298 (1986).

Garrett, L. N., Karen E. Smith, and Norman Meyrowitz.
"Intermedia: Issues, Strategies, and Tactics in the
Design of a Hypermedia Document System," Computer-
Supported Cooperative Work (CSCW '86) Proceedings.
Austin: (publisher unavailable) 1986.

Gowin, D. Bob, Author. Telephone interview. Cornell
University, Ithaca, NY, 18 August 1988.

Hammwohner, Rainer and Ulrich Thiel. "Content Oriented
Relations between Text Units -- a Structural Model for
Hypertexts," Hypertertext '87 Papers. 155-174.
Chapel Hill, NC: Hypertext Planning Committee, November
1987.

0
BIB. 2

Hativa, Nira. "The Microcomputer as a Classroom Audio
Visual Device: the Concept, and Prospects for
Adoption," Computers and Education, 10: 359-368 (1986).

Hayward, S. A., B. J. Wielinga, and J. A. Breuker.
"Structured Analysis of Knowledge," International
Journal for Man-Machine Studies, 26: 487-498 (April
1987).

Hershey, W. "Guide," Byte, 12: 244-246 (October 1987).

Hodges, J. C. and M. E. Whitten. Harbrace College Handbook
(Ninth edition). New York: Harcourt Brace Jovanovich,
1982.

Knowledge Garden, Inc. KnowledqePro. Instruction Manual.
Nassau, NY: 1988.

------ Welcom- 4o TextPro. Instruction Manual. Nassau,
NY: 1987.

Landow, Georgr P. "Relationally Encoded Links and the
Rhetoric ir Hypertext," Hypertertext '87 Papers. 331-
344. Chapel Hill, NC: Hypertext Planning Committee,
November 1987.

Lawler, Robert W. and Masoud Yazdani. Artificial
Intelligence and Education Volume One. Norwood, NJ:
Ablex Publishing, 1987.

Linn, Marcia C. Hypermedia and Programming Instruction:
Opportunities for Meeting Department of Defense
Training Needs. Position paper. Instructional
Technology Program, University of California, Berkeley,
CA, February 1988.

MacNiven, Major Donald B. Computer-Based Training Systems:
Organizing to Use Them. Student Report 87-1615. Air
Command and Staff College/EDCC, Maxwell AFB, AL, April
1987.

Marchionini, Gary and Ben Shneiderman. "Finding Facts vs.
Browsing Knowledge in Hypertext Systems," IEEE
Computer, 21: 70-80 (January 1988).

Marshall, Catherine. "Exploring Representation Problems
Using Hypertext," Hypertertext '87 Papers. 253-268.
Chapel Hill, NC: Hypertext Planning Committee, November
1987.

0
BIB. 3

Mayes, J. Terrance, Michael R. Kibby, and Hugh Watson. "The
Development and Evaluation of a Learning-by-Browsing
System on the MacIntosh," Computers and Education 12:
221-229 (1988).

McCaughley, M. P. "Synchronizing a Tape Recorder to an
Educational Computer Program," Educational Technology
Systems, 15: 401-406 (1986-87).

McFarren, Capt Michael R. Using Concept Mapping to Define
Problems and Identify Key Kernels During the
Development of a Decision Support System. MS thesis,
AFIT/GST/ENS/87J-12. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
June 1987.

Neuwirth, Christine, David Kaufer, Rich Chimera, and Terilyn
Gillespie. "The Notes Program: A Hypertext Application
for Writing from Source Texts," Hypertext '87 Papers.
121-142. Chapel Hill, NC: Hypertext Planning
Committee, November 1987.

Norman, Kent L., Linda J. Weldon, and Ben Shneiderman.
"Cognitive Layouts of Windows and Multiple Screens for
User Interfaces, International Journal of Man-Machine
Studies 25: 229-248 (August 1986).

Novak, Joseph D. A Theory of Education. Ithaca: Cornell
University Press, 1977.

Novak, Joseph D. and D. Bob Gowin. Learning How to Learn.
Cambridge: Cambridge University Press, 1986.

Ohlsson, Stellan. "Some Principles of Intelligent
Tutoring," Artificial Intelligence and Education,
Volume One, edited by Robert W. Lawler and Masoud
Yazdani. Norwood, NJ: Albex Publishing Company, 1987.

Oren, Tim. "The Architecture of Static Hypertexts,"
Hypertertext '87 Papers. 291-306. Chapel Hill, NC:
Hypertext Planning Committee, November 1987.

O'Shea, Tim and John Self. Learning and Teaching with
Computers. Englewood Cliffs, NJ: Prentice-Hall, 1983.

Plambondon, Rdjean, and Jean-Guy Deschdnes. "Course Design
Using Software Engineering Methods," Computers and
Education, 10: 417-428 (1986).

Pressman, Roger S. Software Engineering: A Practitioner's
Approach (Second edition). New York: McGraw-Hill,
1987.

BIB. 4

Psotka, Joseph. "AI Applications to Machine Translation and
Language Instruction," (Published in a confidential
report of Knowledge-Based Information Systems, title
unavailable). The Hague: SHAPE Technical Center,
October 1987. Copy furnished by author.

Rambally, G. K. and R. S. Rambally. "Human Factors in CAI
Design," Computers and Education, li: 149-154 (1987).

Raskin, Jef. "The Hype in Hypertext," Hypertertext '87
Papers. 325-330. Chapel Hill, NC: Hypertext Planning
Committee, November 1987.

Raymond, J. "The Computerized Overhead Projector,"
Computers and Education, 11: 181-195 (1987).

Roman, David. "Computer-Based Training Tutorials Well-
Taught," Computer Decisions. 17: 82-84+ (30 July 1985).

Shasha, Dennis. "When Does Non-linear Text Help?," Expert
Database Systems. Edited by Larry Kerschberg. (city
unavailable): The Benjamin/Cummings Publishing Co.,
Inc., 1987.

Shaw, Donna G., K. M. Swigger, and J. Herndon. "Children's
Questions: a Study of Questions Children Ask while
Learning to Use a Computer," Computers and Education,
9: 15-20 (1985).

Shulman, L. S. and C. Ringstaff. "Current Research in the
Psychology of Learning and Teaching," DesiQning
Computer-Based Learning Materials, edited by Harold
Weinstock and Alfred Bork. New York: Springer-Verlag,
1985.

Smith, John B., Stephen F. Weiss, and Gordon J. Ferguson.
"A Hypertext Writing Environment and its Cognitive
Basis," Hypertertext '87 Papers. 195-214. Chapel
Hill, NC: Hypertext Planning Committee, November 1987.

Smith, Karen E. "Hypertext -- Linking to the Future,"
Online, 12: 32-40 (March 1988).

Thompson, Bev and Bill Thompson. "Hyping Text: Hypertext
and Knowledge Representation," AI Expert, 2: 25-28
(August 1987a).

------ Announcing KnowledqePro. Company Brochure.
Knowledge Garden, Inc., Nassau, NY, 1987b.

BIB. 5

Tombaugh, J., A. Lickorish, and P. Wright. "Multi-window
Displays for Readers of Lengthy Texts," International
Journal for Man-Machine Studies, 26: 597-615 (May
1987).

Verano, Capt Miguel. "Interactive Videodisc and the
Computer," 1985 Air Force Conference on Technology in
Training and Education (TITE) Proceedings. 1-71 - 1-79.
Colorado Springs: (publisher unavailable) 1985.

Walker, Swen A. Student. Figure provided by author. Air
Force Institute of Technology, Wright-Patterson AFB OH,
1 October 1988.

Webster's New Collegiate Dictionary. Springfield, MA: G. &
C. Merriam Co., 1981.

Wilcox, Kenneth R. Student. Figure provided by author.
Air Force Institute of Technology, Wright-Patterson
AFB, OH, 1 February, 1988.

Williams, Gregg. "HyperCard," Byte, 12: 109-117 (December
1987).

Winston, Patrick H. Artificial Intelligence. Reading, MA:
Addison-Wesley Publishing Company, 1984.

Woolfolk, Anita E. and Lorraine McCune-Nicolich.
Educational Psychology for Teachers. Englewood Cliffs,
NJ: Prentice-Hall, 1984.

Yankelovich, Nicole, Bernard J. Haan, Norman K. Meyrowitz,
and Steven M. Drucker. "Intermedia: The Concept and
the Construction of a Seamless Information
Environment," IEEE Computer, 21: 81-96 (January 1988).

Yankelovich, Nicole, George Landow, and Peter Heywood.
Designing Hypermedia "Ideabases" -- The Intermedia
Experience. IRIS Technical Report: 87-4. Providence:
Institute for Research in Information and Scholarship,
Brown University, 1987.

Yankelovich, Nicole, Norman Meyrowitz, and Andries van Dam.
"Reading and Writing the Electronic Book," IEEE
Computer, 18: 15-29 (October 1985).

Yazdani, Masoud. "Intelligent Tutoring Systems: An
Overview," Artificial Intelligence and Education,
Volume One, edited by Robert W. Lawler and Masoud
Yazdani. Norwood, NJ: Albex Publishing Company, 1987.

BIB. 6

Additional Sources

Chasse, James and Joseph J. Rogowski. "The Paperless
Manual," The Army LoQistician (PB 700-87-4): 40-42
(September/October 1986).

Collier, George H. "Thoth-II: Hypertext with Explicit
Semantics," Hypertertext '87 Papers. 269-290.
Chapel Hill, NC: Hypertext Planning Committee, November
1987.

Conklin, Jeff. Telephone interview. Microelectronics and
Computer Technology Corporation, Austin TX, 7 January
1988.

Martin, Merle P. and Willian L. Fuerst. "Using Computer
Knowledge in the Design of Interactive Systems,"
International Journal for Man-Machine Studies, 26: 333-
342 (March 1987).

Montgomery, D. C. Design and Analysis of Experiments
(Second edition). New York: Wiley and Sons, 1984.

0
ADD. 1

Vita

First Lieutenant Michael L. Talbert was born on

In 1981 he

graduated as class co-valedictorian from Great Falls High

School in Great Falls, South Carolina. In 1985 he was

graduated Magna Cum Laude from North Carolina State

University with a Bachelor of Science degree -i meteorology.

Lt. Talbert received his commission through the Air Force

ROTC program at N. C. State, where he was named a

Distinguished Graduate. He then served as Wing Weather

Officer to the 97th Bombardment Wing at Blytheville (now

Eaker) Air Force Base, Arkansas, until entering the School

of Engineering, Air Force Institute of Technology, in May

1987.

Permanent Address:

V.1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OMB No. 0704-0188
a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS• SIFIED

ECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Approved for public release;

Distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/MA/GCS/88D-01

6a. NAME OF PERFORMING ORGANIZATION T 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
School of Egineering (If applicable)

S AFIT/ENC
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
WPAFB, OH 45433-6583

8a. NAME OF FUNDING/SPONSORING I8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)Air Force Institute of Tech. IAI/N
Dept. of Math and Com. Sci. __ _

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNITAir Force Institute of Technology ELEMENT NO. NO. NO ACCESSION NO.WPAFB, OH 45433-6583

1 TITLE (Include Security Classification)
AN OBJT- ORIENTED APPROACH TO THE DEVELOPMENT OF COMPu T ER-ASSISTED INSTRUCTIONAL
MATERIAL USING HYPERTEXT

PERSONAL AUTHOR(S)
qalbert, Michael Lane, iLt, USAF

I g TYPE OF REPORT 13b. TIME COVERED 14.DATE OF R~EPORT (Year, Month, Day) 15S. PAGE COUNTMS Thesis FROM TO December 1988 170

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Object, Object-Oriented, Hypertext,

Computer-Assisted Instruction (CAI)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THESIS CHAIRMAN: David A. Umphress, Capt, USAF
Assistant Professor of Computer Science

ABSTRACT: (see reverse) 5?

DISTRIBUTION/AVALABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
SSIFIED/UNLIMITED 0 SAME AS RPT. C] DTIC USERS UNCLASSIFIED

a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 122c. OFFICE SYMBOL
,,Capt. David A. Umphress 1 513-255-3098 AETT/E'C

DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

This thesis combines the concepts of learning theory, knowledge
engineering, software engineering, and hypertext. It presents a
methodology for creating formally structured hypertext-based documents
for use in transfer learning-oriented computer-based tutorials. The
methodology, which parallels the proven object-oriented software design
paradigm (OOD), facilitates the decomposition of a knowledge base into a
hierarchical structure of text passages which form a tutorial. Applica-
tion of the methodology results in encapsulated text objects which
demonstrate many of the desirable software characteristics (e.g. modular-
ity, cohesion). Evaluation of the methodology showed that it produced
a computer-based tutorial which facilitates a learner's relationship-
oriented assimilation of the concepts presented in the tutorial.

